Do you want to publish a course? Click here

A Bayesian Nonparametric Approach to Geographic Regression Discontinuity Designs: Do School Districts Affect NYC House Prices?

306   0   0.0 ( 0 )
 Added by Maxime Rischard
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Most research on regression discontinuity designs (RDDs) has focused on univariate cases, where only those units with a forcing variable on one side of a threshold value receive a treatment. Geographical regression discontinuity designs (GeoRDDs) extend the RDD to multivariate settings with spatial forcing variables. We propose a framework for analysing GeoRDDs, which we implement using Gaussian process regression. This yields a Bayesian posterior distribution of the treatment effect at every point along the border. We address nuances of having a functional estimand defind on a border with potentially intricate topology, particularly when defining and estimating causal estimands of the local average treatment effect (LATE). The Bayesian estimate of the LATE can also be used as a test statistic in a hypothesis test with good frequentist properties, which we validate using simulations and placebo tests. We demonstrate our methodology with a dataset of property sales in New York City, to assess whether there is a discontinuity in housing prices at the border between two school district. We find a statistically significant difference in price across the border between the districts with $p$=0.002, and estimate a 20% higher price on average for a house on the more desirable side.



rate research

Read More

One of the most popular methodologies for estimating the average treatment effect at the threshold in a regression discontinuity design is local linear regression (LLR), which places larger weight on units closer to the threshold. We propose a Gaussian process regression methodology that acts as a Bayesian analog to LLR for regression discontinuity designs. Our methodology provides a flexible fit for treatment and control responses by placing a general prior on the mean response functions. Furthermore, unlike LLR, our methodology can incorporate uncertainty in how units are weighted when estimating the treatment effect. We prove our method is consistent in estimating the average treatment effect at the threshold. Furthermore, we find via simulation that our method exhibits promising coverage, interval length, and mean squared error properties compared to standard LLR and state-of-the-art LLR methodologies. Finally, we explore the performance of our method on a real-world example by studying the impact of being a first-round draft pick on the performance and playing time of basketball players in the National Basketball Association.
Regression discontinuity (RD) design in a practical context is often contaminated by units behavior to manipulate their treatment assignment. However, we have no formal justification for point identification in such a contaminated RD design. Diagnostic tests have been proposed to detect manipulations, but they do not guarantee identification without some auxiliary assumptions, and the auxiliary assumptions have not been proposed. This study proposes a set of restrictions for possibly manipulated RD designs to validate point identification and diagnostic tests. The same restrictions simultaneously validate worst-case bounds when the diagnostic tests are validated. Therefore, our designs are manipulation robust in testing and identification. The worst-case bounds have two shorter bounds as special cases, and we apply special-case bounds to a controversy regarding the incumbency margin study of the U.S. House of Representatives elections studied in Lee (2008).
Electricity market price predictions enable energy market participants to shape their consumption or supply while meeting their economic and environmental objectives. By utilizing the basic properties of the supply-demand matching process performed by grid operators, known as Optimal Power Flow (OPF), we develop a methodology to recover energy markets structure and predict the resulting nodal prices by using only publicly available data, specifically grid-wide generation type mix, system load, and historical prices. Our methodology uses the latest advancements in statistical learning to cope with high dimensional and sparse real power grid topologies, as well as scarce, public market data, while exploiting structural characteristics of the underlying OPF mechanism. Rigorous validations using the Southwest Power Pool (SPP) market data reveal a strong correlation between the grid level mix and corresponding market prices, resulting in accurate day-ahead predictions of real time prices. The proposed approach demonstrates remarkable proximity to the state-of-the-art industry benchmark while assuming a fully decentralized, market-participant perspective. Finally, we recognize the limitations of the proposed and other evaluated methodologies in predicting large price spike values.
In many applications there is interest in estimating the relation between a predictor and an outcome when the relation is known to be monotone or otherwise constrained due to the physical processes involved. We consider one such application--inferring time-resolved aerosol concentration from a low-cost differential pressure sensor. The objective is to estimate a monotone function and make inference on the scaled first derivative of the function. We proposed Bayesian nonparametric monotone regression which uses a Bernstein polynomial basis to construct the regression function and puts a Dirichlet process prior on the regression coefficients. The base measure of the Dirichlet process is a finite mixture of a mass point at zero and a truncated normal. This construction imposes monotonicity while clustering the basis functions. Clustering the basis functions reduces the parameter space and allows the estimated regression function to be linear. With the proposed approach we can make closed-formed inference on the derivative of the estimated function including full quantification of uncertainty. In a simulation study the proposed method performs similar to other monotone regression approaches when the true function is wavy but performs better when the true function is linear. We apply the method to estimate time-resolved aerosol concentration with a newly-developed portable aerosol monitor. The R package bnmr is made available to implement the method.
House price increases have been steady over much of the last 40 years, but there have been occasional declines, most notably in the recent housing bust that started around 2007, on the heels of the preceding housing bubble. We introduce a novel growth model that is motivated by time-warping models in functional data analysis and includes a nonmonotone time-warping component that allows the inclusion and description of boom-bust cycles and facilitates insights into the dynamics of asset bubbles. The underlying idea is to model longitudinal growth trajectories for house prices and other phenomena, where temporal setbacks and deflation may be encountered, by decomposing such trajectories into two components. A first component corresponds to underlying steady growth driven by inflation that anchors the observed trajectories on a simple first order linear differential equation, while a second boom-bust component is implemented as time warping. Time warping is a commonly encountered phenomenon and reflects random variation along the time axis. Our approach to time warping is more general than previous approaches by admitting the inclusion of nonmonotone warping functions. The anchoring of the trajectories on an underlying linear dynamic system also makes the time-warping component identifiable and enables straightforward estimation procedures for all model components. The application to the dynamics of housing prices as observed for 19 metropolitan areas in the U.S. from December 1998 to July 2013 reveals that the time setbacks corresponding to nonmonotone time warping vary substantially across markets and we find indications that they are related to market-specific growth rates.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا