Do you want to publish a course? Click here

Manipulation-Robust Regression Discontinuity Designs

103   0   0.0 ( 0 )
 Added by Masayuki Sawada
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Regression discontinuity (RD) design in a practical context is often contaminated by units behavior to manipulate their treatment assignment. However, we have no formal justification for point identification in such a contaminated RD design. Diagnostic tests have been proposed to detect manipulations, but they do not guarantee identification without some auxiliary assumptions, and the auxiliary assumptions have not been proposed. This study proposes a set of restrictions for possibly manipulated RD designs to validate point identification and diagnostic tests. The same restrictions simultaneously validate worst-case bounds when the diagnostic tests are validated. Therefore, our designs are manipulation robust in testing and identification. The worst-case bounds have two shorter bounds as special cases, and we apply special-case bounds to a controversy regarding the incumbency margin study of the U.S. House of Representatives elections studied in Lee (2008).



rate research

Read More

In non-experimental settings, the Regression Discontinuity (RD) design is one of the most credible identification strategies for program evaluation and causal inference. However, RD treatment effect estimands are necessarily local, making statistical methods for the extrapolation of these effects a key area for development. We introduce a new method for extrapolation of RD effects that relies on the presence of multiple cutoffs, and is therefore design-based. Our approach employs an easy-to-interpret identifying assumption that mimics the idea of common trends in difference-in-differences designs. We illustrate our methods with data on a subsidized loan program on post-education attendance in Colombia, and offer new evidence on program effects for students with test scores away from the cutoff that determined program eligibility.
We develop a novel method of constructing confidence bands for nonparametric regression functions under shape constraints. This method can be implemented via a linear programming, and it is thus computationally appealing. We illustrate a usage of our proposed method with an application to the regression kink design (RKD). Econometric analyses based on the RKD often suffer from wide confidence intervals due to slow convergence rates of nonparametric derivative estimators. We demonstrate that economic models and structures motivate shape restrictions, which in turn contribute to shrinking the confidence interval for an analysis of the causal effects of unemployment insurance benefits on unemployment durations.
One of the most popular methodologies for estimating the average treatment effect at the threshold in a regression discontinuity design is local linear regression (LLR), which places larger weight on units closer to the threshold. We propose a Gaussian process regression methodology that acts as a Bayesian analog to LLR for regression discontinuity designs. Our methodology provides a flexible fit for treatment and control responses by placing a general prior on the mean response functions. Furthermore, unlike LLR, our methodology can incorporate uncertainty in how units are weighted when estimating the treatment effect. We prove our method is consistent in estimating the average treatment effect at the threshold. Furthermore, we find via simulation that our method exhibits promising coverage, interval length, and mean squared error properties compared to standard LLR and state-of-the-art LLR methodologies. Finally, we explore the performance of our method on a real-world example by studying the impact of being a first-round draft pick on the performance and playing time of basketball players in the National Basketball Association.
We study the causal interpretation of regressions on multiple dependent treatments and flexible controls. Such regressions are often used to analyze randomized control trials with multiple intervention arms, and to estimate institutional quality (e.g. teacher value-added) with observational data. We show that, unlike with a single binary treatment, these regressions do not generally estimate convex averages of causal effects-even when the treatments are conditionally randomly assigned and the controls fully address omitted variables bias. We discuss different solutions to this issue, and propose as a solution anew class of efficient estimators of weighted average treatment effects.
This paper provides a method to construct simultaneous confidence bands for quantile functions and quantile effects in nonlinear network and panel models with unobserved two-way effects, strictly exogenous covariates, and possibly discrete outcome variables. The method is based upon projection of simultaneous confidence bands for distribution functions constructed from fixed effects distribution regression estimators. These fixed effects estimators are debiased to deal with the incidental parameter problem. Under asymptotic sequences where both dimensions of the data set grow at the same rate, the confidence bands for the quantile functions and effects have correct joint coverage in large samples. An empirical application to gravity models of trade illustrates the applicability of the methods to network data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا