No Arabic abstract
Estimation-of-distribution algorithms (EDAs) are randomized search heuristics that create a probabilistic model of the solution space, which is updated iteratively, based on the quality of the solutions sampled according to the model. As previous works show, this iteration-based perspective can lead to erratic updates of the model, in particular, to bit-frequencies approaching a random boundary value. In order to overcome this problem, we propose a new EDA based on the classic compact genetic algorithm (cGA) that takes into account a longer history of samples and updates its model only with respect to information which it classifies as statistically significant. We prove that this significance-based compact genetic algorithm (sig-cGA) optimizes the commonly regarded benchmark functions OneMax, LeadingOnes, and BinVal all in quasilinear time, a result shown for no other EDA or evolutionary algorithm so far. For the recently proposed scGA -- an EDA that tries to prevent erratic model updates by imposing a bias to the uniformly distributed model -- we prove that it optimizes OneMax only in a time exponential in its hypothetical population size. Similarly, we show that the convex search algorithm cannot optimize OneMax in polynomial time.
Estimation-of-distribution algorithms (EDAs) are general metaheuristics used in optimization that represent a more recent alternative to classical approaches like evolutionary algorithms. In a nutshell, EDAs typically do not directly evolve populations of search points but build probabilistic models of promising solutions by repeatedly sampling and selecting points from the underlying search space. Recently, there has been made significant progress in the theoretical understanding of EDAs. This article provides an up-to-date overview of the most commonly analyzed EDAs and the most recent theoretical results in this area. In particular, emphasis is put on the runtime analysis of simple univariate EDAs, including a description of typical benchmark functions and tools for the analysis. Along the way, open problems and directions for future research are described.
This study analyzes performance of several genetic and evolutionary algorithms on randomly generated NK fitness landscapes with various values of n and k. A large number of NK problem instances are first generated for each n and k, and the global optimum of each instance is obtained using the branch-and-bound algorithm. Next, the hierarchical Bayesian optimization algorithm (hBOA), the univariate marginal distribution algorithm (UMDA), and the simple genetic algorithm (GA) with uniform and two-point crossover operators are applied to all generated instances. Performance of all algorithms is then analyzed and compared, and the results are discussed.
The aim of this work is studying the use of copulas and vines in the optimization with Estimation of Distribution Algorithms (EDAs). Two EDAs are built around the multivariate product and normal copulas, and other two are based on pair-copula decomposition of vine models. Empirically we study the effect of both marginal distributions and dependence structure separately, and show that both aspects play a crucial role in the success of the optimization. The results show that the use of copulas and vines opens new opportunities to a more appropriate modeling of search distributions in EDAs.
The paper analyzes the scalability of multiobjective estimation of distribution algorithms (MOEDAs) on a class of boundedly-difficult additively-separable multiobjective optimization problems. The paper illustrates that even if the linkage is correctly identified, massive multimodality of the search problems can easily overwhelm the nicher and lead to exponential scale-up. Facetwise models are subsequently used to propose a growth rate of the number of differing substructures between the two objectives to avoid the niching method from being overwhelmed and lead to polynomial scalability of MOEDAs.
This paper proposes a new memetic evolutionary algorithm to achieve explicit learning in rule-based nurse rostering, which involves applying a set of heuristic rules for each nurses assignment. The main framework of the algorithm is an estimation of distribution algorithm, in which an ant-miner methodology improves the individual solutions produced in each generation. Unlike our previous work (where learning is implicit), the learning in the memetic estimation of distribution algorithm is explicit, i.e. we are able to identify building blocks directly. The overall approach learns by building a probabilistic model, i.e. an estimation of the probability distribution of individual nurse-rule pairs that are used to construct schedules. The local search processor (i.e. the ant-miner) reinforces nurse-rule pairs that receive higher rewards. A challenging real world nurse rostering problem is used as the test problem. Computational results show that the proposed approach outperforms most existing approaches. It is suggested that the learning methodologies suggested in this paper may be applied to other scheduling problems where schedules are built systematically according to specific rules