No Arabic abstract
This study analyzes performance of several genetic and evolutionary algorithms on randomly generated NK fitness landscapes with various values of n and k. A large number of NK problem instances are first generated for each n and k, and the global optimum of each instance is obtained using the branch-and-bound algorithm. Next, the hierarchical Bayesian optimization algorithm (hBOA), the univariate marginal distribution algorithm (UMDA), and the simple genetic algorithm (GA) with uniform and two-point crossover operators are applied to all generated instances. Performance of all algorithms is then analyzed and compared, and the results are discussed.
We present a novel Auxiliary Truth enhanced Genetic Algorithm (GA) that uses logical or mathematical constraints as a means of data augmentation as well as to compute loss (in conjunction with the traditional MSE), with the aim of increasing both data efficiency and accuracy of symbolic regression (SR) algorithms. Our method, logic-guided genetic algorithm (LGGA), takes as input a set of labelled data points and auxiliary truths (ATs) (mathematical facts known a priori about the unknown function the regressor aims to learn) and outputs a specially generated and curated dataset that can be used with any SR method. Three key insights underpin our method: first, SR users often know simple ATs about the function they are trying to learn. Second, whenever an SR system produces a candidate equation inconsistent with these ATs, we can compute a counterexample to prove the inconsistency, and further, this counterexample may be used to augment the dataset and fed back to the SR system in a corrective feedback loop. Third, the value addition of these ATs is that their use in both the loss function and the data augmentation process leads to better rates of convergence, accuracy, and data efficiency. We evaluate LGGA against state-of-the-art SR tools, namely, Eureqa and TuringBot on 16 physics equations from The Feynman Lectures on Physics book. We find that using these SR tools in conjunction with LGGA results in them solving up to 30.0% more equations, needing only a fraction of the amount of data compared to the same tool without LGGA, i.e., resulting in up to a 61.9% improvement in data efficiency.
The paper analyzes the scalability of multiobjective estimation of distribution algorithms (MOEDAs) on a class of boundedly-difficult additively-separable multiobjective optimization problems. The paper illustrates that even if the linkage is correctly identified, massive multimodality of the search problems can easily overwhelm the nicher and lead to exponential scale-up. Facetwise models are subsequently used to propose a growth rate of the number of differing substructures between the two objectives to avoid the niching method from being overwhelmed and lead to polynomial scalability of MOEDAs.
Estimation-of-distribution algorithms (EDAs) are general metaheuristics used in optimization that represent a more recent alternative to classical approaches like evolutionary algorithms. In a nutshell, EDAs typically do not directly evolve populations of search points but build probabilistic models of promising solutions by repeatedly sampling and selecting points from the underlying search space. Recently, there has been made significant progress in the theoretical understanding of EDAs. This article provides an up-to-date overview of the most commonly analyzed EDAs and the most recent theoretical results in this area. In particular, emphasis is put on the runtime analysis of simple univariate EDAs, including a description of typical benchmark functions and tools for the analysis. Along the way, open problems and directions for future research are described.
Estimation-of-distribution algorithms (EDAs) are randomized search heuristics that create a probabilistic model of the solution space, which is updated iteratively, based on the quality of the solutions sampled according to the model. As previous works show, this iteration-based perspective can lead to erratic updates of the model, in particular, to bit-frequencies approaching a random boundary value. In order to overcome this problem, we propose a new EDA based on the classic compact genetic algorithm (cGA) that takes into account a longer history of samples and updates its model only with respect to information which it classifies as statistically significant. We prove that this significance-based compact genetic algorithm (sig-cGA) optimizes the commonly regarded benchmark functions OneMax, LeadingOnes, and BinVal all in quasilinear time, a result shown for no other EDA or evolutionary algorithm so far. For the recently proposed scGA -- an EDA that tries to prevent erratic model updates by imposing a bias to the uniformly distributed model -- we prove that it optimizes OneMax only in a time exponential in its hypothetical population size. Similarly, we show that the convex search algorithm cannot optimize OneMax in polynomial time.
Since their conception in 1975, Genetic Algorithms have been an extremely popular approach to find exact or approximate solutions to optimization and search problems. Over the last years there has been an enhanced interest in the field with related techniques, such as grammatical evolution, being developed. Unfortunately, work on developing genetic optimizations for low-end embedded architectures hasnt embraced the same enthusiasm. This short paper tackles that situation by demonstrating how genetic algorithms can be implemented in Arduino Duemilanove, a 16 MHz open-source micro-controller, with limited computation power and storage resources. As part of this short paper, the libraries used in this implementation are released into the public domain under a GPL license.