No Arabic abstract
Veloce is an ultra-stable fibre-fed R4 echelle spectrograph for the 3.9 m Anglo-Australian Telescope. The first channel to be commissioned, Veloce Rosso, utilises multiple low-cost design innovations to obtain Doppler velocities for Sun-like and M-dwarf stars at <1 m/s precision. The spectrograph has an asymmetric white-pupil format with a 100-mm beam diameter, delivering R>75,000 spectra over a 580-950 nm range for the Rosso channel. Simultaneous calibration is provided by a single-mode pulsed laser frequency comb in tandem with a traditional arc lamp. A bundle of 19 object fibres provides a 2.4 field of view for full sampling of stellar targets from the AAT site. Veloce is housed in dual environmental enclosures that maintain positive air pressure at a stability of +/-0.3 mbar, with a thermal stability of +/-0.01 K on the optical bench. We present a technical overview and early performance data from Australias next major spectroscopic machine.
MAROON-X is a fiber-fed, red-optical, high precision radial velocity spectrograph recently commissioned at the Gemini North telescope on Mauna Kea, Hawaii. With a resolving power of 85,000 and a wavelength coverage of 500-920 nm, it delivers radial velocity measurements for late K and M dwarfs with sub-50 cm s$^{-1}$ precision. MAROON-X is currently the only optical EPRV spectrograph on a 8m-class telescope in the northern hemisphere and the only EPRV instrument on a large telescope with full access by the entire US community. We report here on the results of the commissioning campaign in December 2019 and early science results.
High-precision spectrographs play a key role in exoplanet searches using the radial velocity technique. But at the accuracy level of 1 m.s-1, required for super-Earth characterization, stability of fiber-fed spectrograph performance is crucial considering variable observing conditions such as seeing, guiding and centering errors and, telescope vignetting. In fiber-fed spectrographs such as HARPS or SOPHIE, the fiber link scrambling properties are one of the main issues. Both the stability of the fiber near-field uniformity at the spectrograph entrance and of the far-field illumination on the echelle grating (pupil) are critical for high-precision radial velocity measurements due to the spectrograph geometrical field and aperture aberrations. We conducted tests on the SOPHIE spectrograph at the 1.93-m OHP telescope to measure the instrument sensitivity to the fiber link light feeding conditions: star decentering, telescope vignetting by the dome,and defocussing. To significantly improve on current precision, we designed a fiber link modification considering the spectrograph operational constraints. We have developed a new link which includes a piece of octagonal-section fiber, having good scrambling properties, lying inside the former circular-section fiber, and we tested the concept on a bench to characterize near-field and far-field scrambling properties. This modification has been implemented in spring 2011 on the SOPHIE spectrograph fibers and tested for the first time directly on the sky to demonstrate the gain compared to the previous fiber link. Scientific validation for exoplanet search and characterization has been conducted by observing standard stars.
The EXtreme PREcision Spectrograph (EXPRES) is an environmentally stabilized, fiber-fed, $R=137,500$, optical spectrograph. It was recently commissioned at the 4.3-m Lowell Discovery Telescope (LDT) near Flagstaff, Arizona. The spectrograph was designed with a target radial-velocity (RV) precision of 30$mathrm{~cm~s^{-1}}$. In addition to instrumental innovations, the EXPRES pipeline, presented here, is the first for an on-sky, optical, fiber-fed spectrograph to employ many novel techniques---including an extended flat fiber used for wavelength-dependent quantum efficiency characterization of the CCD, a flat-relative optimal extraction algorithm, chromatic barycentric corrections, chromatic calibration offsets, and an ultra-precise laser frequency comb for wavelength calibration. We describe the reduction, calibration, and radial-velocity analysis pipeline used for EXPRES and present an example of our current sub-meter-per-second RV measurement precision, which reaches a formal, single-measurement error of 0.3$mathrm{~m~s^{-1}}$ for an observation with a per-pixel signal-to-noise ratio of 250. These velocities yield an orbital solution on the known exoplanet host 51 Peg that matches literature values with a residual RMS of 0.895$mathrm{~m~s^{-1}}$.
MAROON-X is a red-optical, high precision radial velocity spectrograph currently nearing completion and undergoing extensive performance testing at the University of Chicago. The instrument is scheduled to be installed at Gemini North in the first quarter of 2019. MAROON-X will be the only RV spectrograph on a large telescope with full access by the entire US community. In these proceedings we discuss the latest addition of the red wavelength arm and the two science grade detector systems, as well as the design and construction of the telescope front end. We also present results from ongoing RV stability tests in the lab. First results indicate that MAROON-X can be calibrated at the sub-m/s level, and perhaps even much better than that using a simultaneous reference approach.
Precise mass measurements of exoplanets discovered by the direct imaging or transit technique are required to determine planet bulk properties and potential habitability. Furthermore, it is generally acknowledged that, for the foreseeable future, the Extreme Precision Radial Velocity (EPRV) measurement technique is the only method potentially capable of detecting and measuring the masses and orbits of habitable-zone Earths orbiting nearby F, G, and K spectral-type stars from the ground. In particular, EPRV measurements with a precision of better than approximately 10 cm/s (with a few cm/s stability over many years) are required. Unfortunately, for nearly a decade, PRV instruments and surveys have been unable to routinely reach RV accuracies of less than roughly 1 m/s. Making EPRV science and technology development a critical component of both NASA and NSF program plans is crucial for reaching the goal of detecting potentially habitable Earthlike planets and supporting potential future exoplanet direct imaging missions such as the Habitable Exoplanet Observatory (HabEx) or the Large Ultraviolet Optical Infrared Surveyor (LUVOIR). In recognition of these facts, the 2018 National Academy of Sciences (NAS) Exoplanet Science Strategy (ESS) report recommended the development of EPRV measurements as a critical step toward the detection and characterization of habitable, Earth-analog planets. In response to the NAS-ESS recommendation, NASA and NSF commissioned the EPRV Working Group to recommend a ground-based program architecture and implementation plan to achieve the goal intended by the NAS. This report documents the activities, findings, and recommendations of the EPRV Working Group.