No Arabic abstract
MAROON-X is a fiber-fed, red-optical, high precision radial velocity spectrograph recently commissioned at the Gemini North telescope on Mauna Kea, Hawaii. With a resolving power of 85,000 and a wavelength coverage of 500-920 nm, it delivers radial velocity measurements for late K and M dwarfs with sub-50 cm s$^{-1}$ precision. MAROON-X is currently the only optical EPRV spectrograph on a 8m-class telescope in the northern hemisphere and the only EPRV instrument on a large telescope with full access by the entire US community. We report here on the results of the commissioning campaign in December 2019 and early science results.
MAROON-X is a red-optical, high precision radial velocity spectrograph currently nearing completion and undergoing extensive performance testing at the University of Chicago. The instrument is scheduled to be installed at Gemini North in the first quarter of 2019. MAROON-X will be the only RV spectrograph on a large telescope with full access by the entire US community. In these proceedings we discuss the latest addition of the red wavelength arm and the two science grade detector systems, as well as the design and construction of the telescope front end. We also present results from ongoing RV stability tests in the lab. First results indicate that MAROON-X can be calibrated at the sub-m/s level, and perhaps even much better than that using a simultaneous reference approach.
Veloce is an ultra-stable fibre-fed R4 echelle spectrograph for the 3.9 m Anglo-Australian Telescope. The first channel to be commissioned, Veloce Rosso, utilises multiple low-cost design innovations to obtain Doppler velocities for Sun-like and M-dwarf stars at <1 m/s precision. The spectrograph has an asymmetric white-pupil format with a 100-mm beam diameter, delivering R>75,000 spectra over a 580-950 nm range for the Rosso channel. Simultaneous calibration is provided by a single-mode pulsed laser frequency comb in tandem with a traditional arc lamp. A bundle of 19 object fibres provides a 2.4 field of view for full sampling of stellar targets from the AAT site. Veloce is housed in dual environmental enclosures that maintain positive air pressure at a stability of +/-0.3 mbar, with a thermal stability of +/-0.01 K on the optical bench. We present a technical overview and early performance data from Australias next major spectroscopic machine.
High-precision spectrographs play a key role in exoplanet searches using the radial velocity technique. But at the accuracy level of 1 m.s-1, required for super-Earth characterization, stability of fiber-fed spectrograph performance is crucial considering variable observing conditions such as seeing, guiding and centering errors and, telescope vignetting. In fiber-fed spectrographs such as HARPS or SOPHIE, the fiber link scrambling properties are one of the main issues. Both the stability of the fiber near-field uniformity at the spectrograph entrance and of the far-field illumination on the echelle grating (pupil) are critical for high-precision radial velocity measurements due to the spectrograph geometrical field and aperture aberrations. We conducted tests on the SOPHIE spectrograph at the 1.93-m OHP telescope to measure the instrument sensitivity to the fiber link light feeding conditions: star decentering, telescope vignetting by the dome,and defocussing. To significantly improve on current precision, we designed a fiber link modification considering the spectrograph operational constraints. We have developed a new link which includes a piece of octagonal-section fiber, having good scrambling properties, lying inside the former circular-section fiber, and we tested the concept on a bench to characterize near-field and far-field scrambling properties. This modification has been implemented in spring 2011 on the SOPHIE spectrograph fibers and tested for the first time directly on the sky to demonstrate the gain compared to the previous fiber link. Scientific validation for exoplanet search and characterization has been conducted by observing standard stars.
We have recently commissioned a novel infrared ($0.9-1.7$ $mu$m) integral field spectrograph (IFS) called the Wide Integral Field Infrared Spectrograph (WIFIS). WIFIS is a unique instrument that offers a very large field-of-view (50$^{primeprime}$ x 20$^{primeprime}$) on the 2.3-meter Bok telescope at Kitt Peak, USA for seeing-limited observations at moderate spectral resolving power. The measured spatial sampling scale is $sim1times1^{primeprime}$ and its spectral resolving power is $Rsim2,500$ and $3,000$ in the $zJ$ ($0.9-1.35$ $mu$m) and $H_{short}$ ($1.5-1.7$ $mu$m) modes, respectively. WIFISs corresponding etendue is larger than existing near-infrared (NIR) IFSes, which are mostly designed to work with adaptive optics systems and therefore have very narrow fields. For this reason, this instrument is specifically suited for studying very extended objects in the near-infrared such as supernovae remnants, galactic star forming regions, and nearby galaxies, which are not easily accessible by other NIR IFSes. This enables scientific programs that were not originally possible, such as detailed surveys of a large number of nearby galaxies or a full accounting of nucleosynthetic yields of Milky Way supernova remnants. WIFIS is also designed to be easily adaptable to be used with larger telescopes. In this paper, we report on the overall performance characteristics of the instrument, which were measured during our commissioning runs in the second half of 2017. We present measurements of spectral resolving power, image quality, instrumental background, and overall efficiency and sensitivity of WIFIS and compare them with our design expectations. Finally, we present a few example observations that demonstrate WIFISs full capability to carry out infrared imaging spectroscopy of extended objects, which is enabled by our custom data reduction pipeline.
All available observations of photometric standard stars obtained with the Gemini Multi-Object Spectrograph at Gemini North in the period from August 2001 to December 2003 have been used to establish the calibrations for photometry obtained with the instrument. The calibrations presented in this paper are based on significantly more photometric standard star observations than usually used by the individual users. Nightly photometric zero points as well as color terms are determined. The color terms are expected to be valid for all observations taken prior to UT 2004 November 21 at which time the Gemini North primary mirror was coated with silver instead of aluminum. While the nightly zero points are accurate to 0.02 mag or better (random errors), the accuracy of the calibrations is limited by systematic errors from so-called sky concentration, an effect seen in all focal reducer instruments. We conclude that an accuracy of 0.035 to 0.05 mag can be achieved by using calibrations derived in this paper. The color terms are strongest for very red objects, e.g. for objects with (r-z)=3.0 the resulting z magnitudes will be ~0.35 mag too bright if the color term is ignored. The calibrations are of importance to the large Gemini user community with data obtained prior to UT 2004 November 21, as well as future users of achive data from this period in time.