No Arabic abstract
The issue of disagreements amongst human experts is a ubiquitous one in both machine learning and medicine. In medicine, this often corresponds to doctor disagreements on a patient diagnosis. In this work, we show that machine learning models can be trained to give uncertainty scores to data instances that might result in high expert disagreements. In particular, they can identify patient cases that would benefit most from a medical second opinion. Our central methodological finding is that Direct Uncertainty Prediction (DUP), training a model to predict an uncertainty score directly from the raw patient features, works better than Uncertainty Via Classification, the two-step process of training a classifier and postprocessing the output distribution to give an uncertainty score. We show this both with a theoretical result, and on extensive evaluations on a large scale medical imaging application.
Electronic health records (EHR) are characterized as non-stationary, heterogeneous, noisy, and sparse data; therefore, it is challenging to learn the regularities or patterns inherent within them. In particular, sparseness caused mostly by many missing values has attracted the attention of researchers, who have attempted to find a better use of all available samples for determining the solution of a primary target task through the defining a secondary imputation problem. Methodologically, existing methods, either deterministic or stochastic, have applied different assumptions to impute missing values. However, once the missing values are imputed, most existing methods do not consider the fidelity or confidence of the imputed values in the modeling of downstream tasks. Undoubtedly, an erroneous or improper imputation of missing variables can cause difficulties in modeling as well as a degraded performance. In this study, we present a novel variational recurrent network that (i) estimates the distribution of missing variables allowing to represent uncertainty in the imputed values, (ii) updates hidden states by explicitly applying fidelity based on a variance of the imputed values during a recurrence (i.e., uncertainty propagation over time), and (iii) predicts the possibility of in-hospital mortality. It is noteworthy that our model can conduct these procedures in a single stream and learn all network parameters jointly in an end-to-end manner. We validated the effectiveness of our method using the public datasets of MIMIC-III and PhysioNet challenge 2012 by comparing with and outperforming other state-of-the-art methods for mortality prediction considered in our experiments. In addition, we identified the behavior of the model that well represented the uncertainties for the imputed estimates, which indicated a high correlation between the calculated MAE and the uncertainty.
Generating high quality uncertainty estimates for sequential regression, particularly deep recurrent networks, remains a challenging and open problem. Existing approaches often make restrictive assumptions (such as stationarity) yet still perform poorly in practice, particularly in presence of real world non-stationary signals and drift. This paper describes a flexible method that can generate symmetric and asymmetric uncertainty estimates, makes no assumptions about stationarity, and outperforms competitive baselines on both drift and non drift scenarios. This work helps make sequential regression more effective and practical for use in real-world applications, and is a powerful new addition to the modeling toolbox for sequential uncertainty quantification in general.
We propose SLTD (`Sequential Learning-to-Defer) a framework for learning-to-defer pre-emptively to an expert in sequential decision-making settings. SLTD measures the likelihood of improving value of deferring now versus later based on the underlying uncertainty in dynamics. In particular, we focus on the non-stationarity in the dynamics to accurately learn the deferral policy. We demonstrate our pre-emptive deferral can identify regions where the current policy has a low probability of improving outcomes. SLTD outperforms existing non-sequential learning-to-defer baselines, whilst reducing overall uncertainty on multiple synthetic and real-world simulators with non-stationary dynamics. We further derive and decompose the propagated (long-term) uncertainty for interpretation by the domain expert to provide an indication of when the models performance is reliable.
Predicting highrisk vascular diseases is a significant issue in the medical domain. Most predicting methods predict the prognosis of patients from pathological and radiological measurements, which are expensive and require much time to be analyzed. Here we propose deep attention models that predict the onset of the high risky vascular disease from symbolic medical histories sequence of hypertension patients such as ICD-10 and pharmacy codes only, Medical History-based Prediction using Attention Network (MeHPAN). We demonstrate two types of attention models based on 1) bidirectional gated recurrent unit (R-MeHPAN) and 2) 1D convolutional multilayer model (C-MeHPAN). Two MeHPAN models are evaluated on approximately 50,000 hypertension patients with respect to precision, recall, f1-measure and area under the curve (AUC). Experimental results show that our MeHPAN methods outperform standard classification models. Comparing two MeHPANs, R-MeHPAN provides more better discriminative capability with respect to all metrics while C-MeHPAN presents much shorter training time with competitive accuracy.
Subjective Logic (SL) is one of well-known belief models that can explicitly deal with uncertain opinions and infer unknown opinions based on a rich set of operators of fusing multiple opinions. Due to high simplicity and applicability, SL has been substantially applied in a variety of decision making in the area of cybersecurity, opinion models, trust models, and/or social network analysis. However, SL and its variants have exposed limitations in predicting uncertain opinions in real-world dynamic network data mainly in three-fold: (1) a lack of scalability to deal with a large-scale network; (2) limited capability to handle heterogeneous topological and temporal dependencies among node-level opinions; and (3) a high sensitivity with conflicting evidence that may generate counterintuitive opinions derived from the evidence. In this work, we proposed a novel deep learning (DL)-based dynamic opinion inference model while node-level opinions are still formalized based on SL meaning that an opinion has a dimension of uncertainty in addition to belief and disbelief in a binomial opinion (i.e., agree or disagree). The proposed DL-based dynamic opinion inference model overcomes the above three limitations by integrating the following techniques: (1) state-of-the-art DL techniques, such as the Graph Convolutional Network (GCN) and the Gated Recurrent Units (GRU) for modeling the topological and temporal heterogeneous dependency information of a given dynamic network; (2) modeling conflicting opinions based on robust statistics; and (3) a highly scalable inference algorithm to predict dynamic, uncertain opinions in a linear computation time. We validated the outperformance of our proposed DL-based algorithm (i.e., GCN-GRU-opinion model) via extensive comparative performance analysis based on four real-world datasets.