We propose SLTD (`Sequential Learning-to-Defer) a framework for learning-to-defer pre-emptively to an expert in sequential decision-making settings. SLTD measures the likelihood of improving value of deferring now versus later based on the underlying uncertainty in dynamics. In particular, we focus on the non-stationarity in the dynamics to accurately learn the deferral policy. We demonstrate our pre-emptive deferral can identify regions where the current policy has a low probability of improving outcomes. SLTD outperforms existing non-sequential learning-to-defer baselines, whilst reducing overall uncertainty on multiple synthetic and real-world simulators with non-stationary dynamics. We further derive and decompose the propagated (long-term) uncertainty for interpretation by the domain expert to provide an indication of when the models performance is reliable.
Methods to find counterfactual explanations have predominantly focused on one step decision making processes. In this work, we initiate the development of methods to find counterfactual explanations for decision making processes in which multiple, dependent actions are taken sequentially over time. We start by formally characterizing a sequence of actions and states using finite horizon Markov decision processes and the Gumbel-Max structural causal model. Building upon this characterization, we formally state the problem of finding counterfactual explanations for sequential decision making processes. In our problem formulation, the counterfactual explanation specifies an alternative sequence of actions differing in at most k actions from the observed sequence that could have led the observed process realization to a better outcome. Then, we introduce a polynomial time algorithm based on dynamic programming to build a counterfactual policy that is guaranteed to always provide the optimal counterfactual explanation on every possible realization of the counterfactual environment dynamics. We validate our algorithm using both synthetic and real data from cognitive behavioral therapy and show that the counterfactual explanations our algorithm finds can provide valuable insights to enhance sequential decision making under uncertainty.
Robots frequently face complex tasks that require more than one action, where sequential decision-making (SDM) capabilities become necessary. The key contribution of this work is a robot SDM framework, called LCORPP, that supports the simultaneous capabilities of supervised learning for passive state estimation, automated reasoning with declarative human knowledge, and planning under uncertainty toward achieving long-term goals. In particular, we use a hybrid reasoning paradigm to refine the state estimator, and provide informative priors for the probabilistic planner. In experiments, a mobile robot is tasked with estimating human intentions using their motion trajectories, declarative contextual knowledge, and human-robot interaction (dialog-based and motion-based). Results suggest that, in efficiency and accuracy, our framework performs better than its no-learning and no-reasoning counterparts in office environment.
Reasoning with declarative knowledge (RDK) and sequential decision-making (SDM) are two key research areas in artificial intelligence. RDK methods reason with declarative domain knowledge, including commonsense knowledge, that is either provided a priori or acquired over time, while SDM methods (probabilistic planning and reinforcement learning) seek to compute action policies that maximize the expected cumulative utility over a time horizon; both classes of methods reason in the presence of uncertainty. Despite the rich literature in these two areas, researchers have not fully explored their complementary strengths. In this paper, we survey algorithms that leverage RDK methods while making sequential decisions under uncertainty. We discuss significant developments, open problems, and directions for future work.
In membership/subscriber acquisition and retention, we sometimes need to recommend marketing content for multiple pages in sequence. Different from general sequential decision making process, the use cases have a simpler flow where customers per seeing recommended content on each page can only return feedback as moving forward in the process or dropping from it until a termination state. We refer to this type of problems as sequential decision making in linear--flow. We propose to formulate the problem as an MDP with Bandits where Bandits are employed to model the transition probability matrix. At recommendation time, we use Thompson sampling (TS) to sample the transition probabilities and allocate the best series of actions with analytical solution through exact dynamic programming. The way that we formulate the problem allows us to leverage TSs efficiency in balancing exploration and exploitation and Bandits convenience in modeling actions incompatibility. In the simulation study, we observe the proposed MDP with Bandits algorithm outperforms Q-learning with $epsilon$-greedy and decreasing $epsilon$, independent Bandits, and interaction Bandits. We also find the proposed algorithms performance is the most robust to changes in the across-page interdependence strength.
We study the design of autonomous agents that are capable of deceiving outside observers about their intentions while carrying out tasks in stochastic, complex environments. By modeling the agents behavior as a Markov decision process, we consider a setting where the agent aims to reach one of multiple potential goals while deceiving outside observers about its true goal. We propose a novel approach to model observer predictions based on the principle of maximum entropy and to efficiently generate deceptive strategies via linear programming. The proposed approach enables the agent to exhibit a variety of tunable deceptive behaviors while ensuring the satisfaction of probabilistic constraints on the behavior. We evaluate the performance of the proposed approach via comparative user studies and present a case study on the streets of Manhattan, New York, using real travel time distributions.