Do you want to publish a course? Click here

A Study of the Compact Water Vapor Radiometer for Phase Calibration of the Karl G. Janksy Very Large Array

121   0   0.0 ( 0 )
 Added by Ajay Gill
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on laboratory test results of the Compact Water Vapor Radiometer (CWVR) prototype for the NSFs Karl G. Jansky Very Large Array (VLA), a five-channel design centered around the 22 GHz water vapor line. Fluctuations in precipitable water vapor cause fluctuations in atmospheric brightness emission, which are assumed to be proportional to phase fluctuations of the astronomical signal seen by an antenna. Water vapor radiometry consists of using a radiometer to measure variations in the atmospheric brightness emission to correct for the phase fluctuations. The CWVR channel isolation requirement of < -20 dB is met, indicating < 1% power leakage between any two channels. Gain stability tests indicate that Channel 1 needs repair, and that the fluctuations in output counts for Channel 2 to 5 are negatively correlated to the CWVR enclosure ambient temperature, with a change of ~ 405 counts per 1 degree C change in temperature. With temperature correction, the single channel and channel difference gain stability is < 2 x 10^-4, and the observable gain stability is < 2.5 x 10^-4 over t = 2.5 - 10^3 sec, all of which meet the requirements. Overall, the test results indicate that the CWVR meets specifications for dynamic range, channel isolation, and gain stability to be tested on an antenna. Future work consists of building more CWVRs and testing the phase correlations on the VLA antennas to evaluate the use of WVR for not only the VLA, but also the Next Generation Very Large Array (ngVLA).



rate research

Read More

Atacama Large Millimeter/submillimeter Array (ALMA) will be the world largest mm/submm interferometer, and currently the Early Science is ongoing, together with the commissioning and science verification (CSV). Here we present a study of the temporal phase stability of the entire ALMA system from antennas to the correlator. We verified the temporal phase stability of ALMA using data, taken during the last two years of CSV activities. The data consist of integrations on strong point sources (i.e., bright quasars) at various frequency bands, and at various baseline lengths (up to 600 m). From the observations of strong quasars for a long time (from a few tens of minutes, up to an hour), we derived the 2-point Allan Standard Deviation after the atmospheric phase correction using the 183 GHz Water Vapor Radiometer (WVR) installed in each 12 m antenna, and confirmed that the phase stability of all the baselines reached the ALMA specification. Since we applied the WVR phase correction to all the data mentioned above, we also studied the effectiveness of the WVR phase correction at various frequencies, baseline lengths, and weather conditions. The phase stability often improves a factor of 2 - 3 after the correction, and sometimes a factor of 7 improvement can be obtained. However, the corrected data still displays an increasing phase fluctuation as a function of baseline length, suggesting that the dry component (e.g., N2 and O2) in the atmosphere also contributes the phase fluctuation in the data, although the imperfection of the WVR phase correction cannot be ruled out at this moment.
143 - M. Lacy 2019
The Very Large Array Sky Survey (VLASS) is a synoptic, all-sky radio sky survey with a unique combination of high angular resolution ($approx$2.5), sensitivity (a 1$sigma$ goal of 70 $mu$Jy/beam in the coadded data), full linear Stokes polarimetry, time domain coverage, and wide bandwidth (2-4 GHz). The first observations began in September 2017, and observing for the survey will finish in 2024. VLASS will use approximately 5500 hours of time on the Karl G. Jansky Very Large Array (VLA) to cover the whole sky visible to the VLA (Declination $>-40^{circ}$), a total of 33,885 deg$^2$. The data will be taken in three epochs to allow the discovery of variable and transient radio sources. The survey is designed to engage radio astronomy experts, multi-wavelength astronomers, and citizen scientists alike. By utilizing an on the fly interferometry mode, the observing overheads are much reduced compared to a conventional pointed survey. In this paper, we present the science case and observational strategy for the survey, and also results from early survey observations.
We have used the Karl G. Jansky Very Large Array to image ~100 sq. deg. of SDSS Stripe 82 at 1-2 GHz. The survey consists of 1,026 snapshot observations of 2.5 minutes duration, using the hybrid CnB configuration. The survey has good sensitivity to diffuse, low surface brightness structures and extended radio emission, making it highly synergistic with existing 1.4 GHz radio observations of the region. The principal data products are continuum images, with 16 x 10 arcsecond resolution, and a catalogue containing 11,782 point and Gaussian components resulting from fits to the thresholded Stokes-I brightness distribution, forming approximately 8,948 unique radio sources. The typical effective 1{sigma} noise level is 88 {mu}Jy / beam. Spectral index estimates are included, as derived from the 1 GHz of instantaneous bandwidth. Astrometric and photometric accuracy are in excellent agreement with existing narrowband observations. A large-scale simulation is used to investigate clean bias, which we extend into the spectral domain. Clean bias remains an issue for snapshot surveys with the VLA, affecting our total intensity measurements at the ~1{sigma} level. Statistical spectral index measurements are in good agreement with existing measurements derived from matching separate surveys at two frequencies. At flux densities below ~35{sigma} the median in-band spectral index measurements begin to exhibit a bias towards flatness that is dependent on both flux density and the intrinsic spectral index. In-band spectral curvature measurements are likely to be unreliable for all but the very brightest components. Image products and catalogues are publicly available via an FTP server.
The broad spectral bandwidth at mm and cm-wavelengths provided by the recent upgrades to the Karl G. Jansky Very Large Array (VLA) has made it possible to conduct unbiased searches for molecular CO line emission at redshifts, z > 1.31. We present the discovery of a gas-rich, star-forming galaxy at z = 2.48, through the detection of CO(1-0) line emission in the COLDz survey, through a sensitive, Ka-band (31 to 39 GHz) VLA survey of a 6.5 square arcminute region of the COSMOS field. We argue that the broad line (FWHM ~570 +/- 80 km/s) is most likely to be CO(1-0) at z=2.48, as the integrated emission is spatially coincident with an infrared-detected galaxy with a photometric redshift estimate of z = 3.2 +/- 0.4. The CO(1-0) line luminosity is L_CO = (2.2 +/- 0.3) x 10^{10} K km/s pc^2, suggesting a cold molecular gas mass of M_gas ~ (2 - 8)x10^{10}M_solar depending on the assumed value of the molecular gas mass to CO luminosity ratio alpha_CO. The estimated infrared luminosity from the (rest-frame) far-infrared spectral energy distribution (SED) is L_IR = 2.5x10^{12} L_solar and the star-formation rate is ~250 M_solar/yr, with the SED shape indicating substantial dust obscuration of the stellar light. The infrared to CO line luminosity ratio is ~114+/-19 L_solar/(K km/s pc^2), similar to galaxies with similar SFRs selected at UV/optical to radio wavelengths. This discovery confirms the potential for molecular emission line surveys as a route to study populations of gas-rich galaxies in the future.
Modern interferometric imaging relies on advanced calibration that incorporates direction-dependent effects. Their increasing number of antennas (e.g. in LOFAR, VLA, MeerKAT/SKA) and sensitivity are often tempered with the accuracy of their calibration. Beam accuracy drives particularly the capability for high dynamic range imaging (HDR - contrast > 1:$10^6$). The Radio Interferometric Measurement Equation (RIME) proposes a refined calibration framework for wide field of views (i.e. beyond the primary lobe and first null) using beam models. We have used holography data taken on 12 antennas of the Very Large Array (VLA) with two different approaches: a `data-driven representation derived from Principal Component Analysis (PCA) and a projection on the Zernike polynomials. We determined sparse representations of the beam to encode its spatial and spectral variations. For each approach, we compressed the spatial and spectral distribution of coefficients using low-rank approximations. The spectral behaviour was encoded with a Discrete Cosine Transform (DCT). We compared our modelling to that of the Cassbeam software which provides a parametric model of the antenna and its radiated field. We present comparisons of the beam reconstruction fidelity vs. `compressibility. We found that the PCA method provides the most accurate model. In the case of VLA antennas, we discuss the frequency ripple over L-band which is associated with a standing wave between antenna reflectors. The results are a series of coefficients that can easily be used `on-the-fly in calibration pipelines to generate accurate beams at low computing costs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا