No Arabic abstract
textit{Ab-initio} calculations based on density functional theory with local spin density approximation are used to study defects-driven magnetism in bulk $alpha$-Li$ _{3}$N. Our calculations show that bulk Li$ _{3} $N is a non-magnetic semiconductor. Two types of Li vacancies (Li-I and Li-II) are considered, and Li-vacancies (either Li-I or Li-II type) can induce magnetism in Li$ _{3}$N with a total magnetic moment of 1.0 $mu_{rm B}$ which arises mainly due to partially occupied N-$p$-orbitals around the Li vacancies. The defect formation energies dictate that Li-II vacancy, which is in the Li$ _{2}$N plane, is thermodynamically more stable as compared with Li-I vacancy. The electronic structures of Li-vacancies show half-metallic behavior. On the other hand N-vacancy does not induce magnetism and has a larger formation energy than Li-vacancies. N vacancy derived bands at the Fermi energy are mainly contributed by the Li atoms. Carbon is also doped at Li-I and Li-II sites, and it is expected that doping C at Li-I site is thermodynamically more stable as compared with Li-II site. Carbon can induce metallicity with zero magnetic moment when doped at Li-I site, whereas magnetism is observed when Li-II site is occupied by the C impurity atom and C-driven magnetism is spread over the N atoms as well. Carbon can also induce half-metallic magnetism when doped at N site in Li$ _{3}$N, and has a smaller defect formation energy as compared with Li-II site doping. The ferromagnetic (FM) and antiferromagnetic (AFM) coupling between the C atoms is also investigated, and we conclude that FM state is more stable than the AFM state.
The effect of lithium vacancies in the hexagonal structure of $alpha-$Li$_3$N, is studied within the framework of density functional theory. Vacancies ($square$) substituting for lithium in $alpha-$Li$_2$(Li$_{1-x}square_x$)N are treated within the coherent potential approximation as alloy components. According to our results long range N($p$)-ferromagnetism ($sim 1$ $mu_B$) sets in for vacancy substitution within the [Li$_2$N] layers ($x ge 0.7$) with no significant change in unit cell dimensions. By total energies differences we established that in-plane exchange couplings are dominant. Vacancies substituting inter-plane Li, leads to a considerable structural collapse ($c/a approx 0.7$) and no magnetic moment formation.
Materials with tunable topological features, simple crystal structure and flexible synthesis, are in extraordinary demand towards technological exploitation of unique properties of topological nodal points. The controlled design of the lattice geometry of light elements is determined by utilizing density functional theory and the effective Hamiltonian model together with the symmetry analysis. This provides an intriguing venue for reasonably achieving various distinct types of novel fermions. We, therefore, show that a nodal line (type-I and II), Dirac fermion, and triple point (TP) fermionic excitation can potentially appear as a direct result of a band inversion in group-I nitrides with $alpha$-Li$_{rm 3}$N-type crystal structure. The imposed strain is exclusively significant for these compounds, and it invariably leads to the considerable modification of the nodal line type. Most importantly, a type-II nodal loop can be realized in the system under strain. These unique characteristics make $alpha$-Li$_{rm 3} $N-type crystal structure an ideal playground to achieve various types of novel fermions well-suited for technological applications.
We perform ab initio calculations of hydrogen-based tunneling defects in alumina to identify deleterious two-level systems (TLS) in superconducting qubits. The defects analyzed include bulk hydrogenated Al vacancies, bulk hydrogen interstitial defects, and a surface OH rotor. The formation energies of the defects are first computed for an Al- and O-rich environment to give the likelihood of defect occurrence during growth. The potential energy surfaces are then computed and the corresponding dipole moments are evaluated to determine the coupling of the defects to an electric field. Finally, the tunneling energy is computed for the hydrogen defect and the analogous deuterium defect, providing an estimate of the TLS energy and the corresponding frequency for photon absorption. We predict that hydrogenated cation vacancy defects will form a significant density of GHz-frequency TLSs in alumina.
Mechanical behaviors of bulk metallic glasses (BMGs) including heterogeneous and homogeneous deformation are interpreted by phenomenological shear transformation zones (STZs) model. Currently, information about STZs, i.e. size and density, is only extracted by fitting model equation to the data obtained from macroscopic mechanical tests. This is inadequate since structural features of STZs theory cannot be assessed. Here, we develop anisotropic pair distribution function (PDF) method for directly characterizing mechanical response of deformation defects. Our results reveal the physical picture of deformation defects in BMGs and also provide direct experimental observation of a link between mechanical deformation and intrinsic properties of deformation defects in BMGs.
Non-invasive local probes are needed to characterize bulk defects in binary and ternary chalcogenides. These defects contribute to the non-ideal behavior of topological insulators. We have studied bulk electronic properties via $^{125}$Te NMR in Bi$_2$Te$_3$, Sb$_2$Te$_3$, Bi$_{0.5}$Sb$_{1.5}$Te$_3$, Bi$_2$Te$_2$Se and Bi$_2$Te$_2$S. A distribution of defects gives rise to asymmetry in the powder lineshapes. We show how the Knight shift, line shape and spin-lattice relaxation report on carrier density, spin-orbit coupling and phase separation in the bulk. The present study confirms that the ordered ternary compound Bi$_2$Te$_2$Se is the best TI candidate material at the present time. Our results, which are in good agreement with transport and ARPES studies, help establish the NMR probe as a valuable method to characterize the bulk properties of these materials.