Do you want to publish a course? Click here

Intersection of quadrics in ${mathbb{C}}^n$, moment-angle manifolds, complex manifolds and convex polytopes

68   0   0.0 ( 0 )
 Added by Alberto Verjovsky
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

These are notes for the CIME school on Complex non-Kahler geometry from July 9th to July 13th of 2018 in Cetraro, Italy. It is an overview of different properties of a class of non-Kahler compact complex manifolds called LVMB manifolds, obtained as the Hausdorff space of leaves of systems of commuting complex linear equations in an open set in complex projective space ${{mathbb P}_{mathbb C}}^{n-1}$



rate research

Read More

117 - Franc Forstneric 2021
In this paper we find big Euclidean domains in complex manifolds. We consider open neighbourhoods of sets of the form $Kcup M$ in a complex manifold $X$, where $K$ is a compact $mathscr O(U)$-convex set in an open Stein neighbourhood $U$ of $K$, $M$ is an embedded Stein submanifold of $X$, and $Kcap M$ is compact and $mathscr O(M)$-convex. We prove a Docquier-Grauert type theorem concerning biholomorphic equivalence of neighbourhoods of such sets, and we give sufficient conditions for the existence of Stein neighbourhoods of $Kcup M$, biholomorphic to domains in $mathbb C^n$ with $n=dim X$, such that $M$ is mapped onto a closed complex submanifold of $mathbb C^n$.
Given a complex manifold $X$, any Kahler class defines an affine bundle over $X$, and any Kahler form in the given class defines a totally real embedding of $X$ into this affine bundle. We formulate conditions under which the affine bundles arising this way are Stein and relate this question to other natural positivity conditions on the tangent bundle of $X$. For compact Kahler manifolds of non-negative holomorphic bisectional curvature, we establish a close relation of this construction to adapted complex structures in the sense of Lempert--SzH{o}ke and to the existence question for good complexifications in the sense of Totaro. Moreover, we study projective manifolds for which the induced affine bundle is not just Stein but affine and prove that these must have big tangent bundle. In the course of our investigation, we also obtain a simpler proof of a result of Yang on manifolds having non-negative holomorphic bisectional curvature and big tangent bundle.
262 - Andrea Altomani 2009
We investigate the $CR$ geometry of the orbits $M$ of a real form $G_0$ of a complex simple group $G$ in a complex flag manifold $X=G/Q$. We are mainly concerned with finite type, Levi non-degeneracy conditions, canonical $G_0$-equivariant and Mostow fibrations, and topological properties of the orbits.
We study, from the point of view of CR geometry, the orbits M of a real form G of a complex semisimple Lie group G in a complex flag manifold G/Q. In particular we characterize those that are of finite type and satisfy some Levi nondegeneracy conditions. These properties are also graphically described by attaching to them some cross-marked diagrams that generalize those for minimal orbits that we introduced in a previous paper. By constructing canonical fibrations over real flag manifolds, with simply connected complex fibers, we are also able to compute their fundamental group.
273 - Gabriel Vigny 2019
Let $X$ be a compact Kaehler manifold of dimension $k$ and $T$ be a positive closed current on $X$ of bidimension $(p,p)$ ($1leq p < k-1$). We construct a continuous linear transform $mathcal{L}_p(T)$ of $T$ which is a positive closed current on $X$ of bidimension $(k-1,k-1)$ which has the same Lelong numbers as $T$. We deduce from that construction self-intersection inequalities for positive closed currents of any bidegree.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا