No Arabic abstract
Let $X$ be a compact Kaehler manifold of dimension $k$ and $T$ be a positive closed current on $X$ of bidimension $(p,p)$ ($1leq p < k-1$). We construct a continuous linear transform $mathcal{L}_p(T)$ of $T$ which is a positive closed current on $X$ of bidimension $(k-1,k-1)$ which has the same Lelong numbers as $T$. We deduce from that construction self-intersection inequalities for positive closed currents of any bidegree.
These are notes for the CIME school on Complex non-Kahler geometry from July 9th to July 13th of 2018 in Cetraro, Italy. It is an overview of different properties of a class of non-Kahler compact complex manifolds called LVMB manifolds, obtained as the Hausdorff space of leaves of systems of commuting complex linear equations in an open set in complex projective space ${{mathbb P}_{mathbb C}}^{n-1}$
In this note, we survey our recent work concerning cohomologies of harmonic bundles on quasi-compact Kaehler manifolds.
The paper investigates the (non)existence of compact quotients, by a discrete subgroup, of the homogeneous almost-complex strongly-pseudoconvex manifolds disconvered and classified by Gaussier-Sukhov and K.-H. Lee.
In this note, we propose an approach to the study of the analogue for unipotent harmonic bundles of Schmids Nilpotent Orbit Theorem. Using this approach, we construct harmonic metrics on unipotent bundles over quasi-compact Kahler manifolds with carefully controlled asymptotics near the compactifying divisor; such a metric is unique up to some isometry. Such an asymptotic behavior is canonical in some sense.
Motivated by a problem in holomorphic dynamics, we present a certain generalization of the celebrated F. and M. Riesz Theorem.