No Arabic abstract
The dynamics of attractive bosons trapped in one dimensional anharmonic potentials is investigated. Particular emphasis is put on the variance of the position and momentum many-particle operators. Coupling of the center-of-mass and relative-motion degrees-of-freedom necessitates an accurate numerical treatment. The multiconfigurational time-dependent Hartree for bosons (MCTDHB) method is used, and high convergence of the energy, depletion and occupation numbers, and position and momentum variances is proven numerically. We demonstrate for the ground state and out-of-equilibrium dynamics, for condensed and fragmented condensates, for small systems and {it en route} to the infinite-particle limit, that intriguing differences between the density and variance of an attractive Bose-Einstein condensate emerge. Implications are briefly discussed.
The ground state of a Bose-Einstein condensate in a two-dimensional trap potential is analyzed numerically at the infinite-particle limit. It is shown that the anisotropy of the many-particle position variance along the $x$ and $y$ axes can be opposite when computed at the many-body and mean-field levels of theory. This is despite the system being $100%$ condensed, and the respective energies per particle and densities per particle to coincide.
Understanding the effect of interactions in the phase evolution of expanding atomic Bose Einstein condensates is fundamental to describe the basic phenomenon of matter wave interference. Many theoretical and experimental works tackled this problem, always with the implicit assumption that the mutual interaction between two expanding condensates rigidly modifies the phase evolution through an effective force. In this paper, we present a combined experimental and theoretical investigation of the interference profile of expanding $^{87}$Rb condensates, with a specific focus on the effect of interactions. We come to the different conclusion that the mutual interaction produces local modifications of the condensate phase only in the region where the wavepackets overlap.
We investigate the mean--field equilibrium solutions for a two--species immiscible Bose--Einstein condensate confined by a harmonic confinement with additional linear perturbations. We observe a range of equilibrium density structures, including `ball and shell formations and axially/radially separated states, with a marked sensitivity to the potential perturbations and the relative atom number in each species. Incorporation of linear trap perturbations, albeit weak, are found to be essential to match the range of equilibrium density profiles observed in a recent Rb-87 - Cs-133 Bose-Einstein condensate experiment [D. J. McCarron et al., Phys. Rev. A, 84, 011603(R) (2011)]. Our analysis of this experiment demonstrates that sensitivity to linear trap perturbations is likely to be important factor in interpreting the results of similar experiments in the future.
We investigate the formation of a Bose polaron when a single impurity in a Bose-Einstein condensate is quenched from a non-interacting to an attractively interacting state in the vicinity of a Feshbach resonance. We use a beyond-Frohlich Hamiltonian to describe both sides of the resonance and a coherent-state variational ansatz to compute the time evolution of boson density profiles in position space. We find that on the repulsive side of the Feshbach resonance, the Bose polaron performs long-lived oscillations, which is surprising given that the two-body problem has only one bound state coupled to a continuum. They arise due to interference between multiply occupied bound states and therefore can be only found with many-body approaches such as the coherent-state ansatz. This is a distinguishing feature of the Bose polaron compared to the Fermi polaron where the bound state can be occupied only once. We derive an implicit equation for the frequency of these oscillations and show that it can be approximated by the energy of the two-body bound state. Finally, we consider an impurity introduced at non-zero velocity and find that, on the repulsive side, it is periodically slowed down or even arrested before speeding up again.
We study stability of solitary vortices in the two-dimensional trapped Bose-Einstein condensate (BEC) with a spatially localized region of self-attraction. Solving the respective Bogoliubov-de Gennes equations and running direct simulations of the underlying Gross-Pitaevskii equation reveals that vortices with topological charge up to S = 6 (at least) are stable above a critical value of the chemical potential (i.e., below a critical number of atoms, which sharply increases with S). The largest nonlinearity-localization radius admitting the stabilization of the higher-order vortices is estimated analytically and accurately identified in a numerical form. To the best of our knowledge, this is the first example of a setting which gives rise to stable higher-order vortices, S > 1, in a trapped self-attractive BEC. The same setting may be realized in nonlinear optics too.