Do you want to publish a course? Click here

Polarimetric and spectroscopic study of radio-quiet weak emission line quasars

134   0   0.0 ( 0 )
 Added by Parveen Kumar
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

A small subset of optically selected radio-quiet quasars showing weak or no emission lines may turn out to be the elusive radio-quiet BL Lac objects, or simply be radio-quiet QSOs with a still-forming/shielded broad line region (BLR). High polarisation ($p$ $>$ 3$-$4$%$), a hallmark of BL Lacs, can be used to test whether some optically selected `radio-quiet weak emission line quasars (RQWLQs) show a fractional polarisation high enough to qualify as radio-quiet analogs of BL Lac objects. Out of the observed six RQWLQs candidates showing an insignificant proper motion, only two are found to have $p$ $>$ 1$%$. For these two RQWLQs, namely J142505.59$+$035336.2, J154515.77+003235.2, we found polarisation of 1.03$pm$0.36$%$, 1.59$pm$0.53$%$ respectively, which again is too modest to justify a (radio-quiet) BL Lac classification. We also present here a statistical comparison of the optical spectral index, for a set of 40 RQWLQs with redshift-luminosity matched control sample of 800 QSOs and an equivalent sample of 120 blazars. The spectral index distribution of RQWLQs is found to differ, at a high significance level, from that of blazars and is consistent with that of the ordinary QSOs. Likewise, a structure-function analysis of photometric light curves presented here suggests that the mechanism driving optical variability in RQWLQs is similar to that operating in QSOs and different from that of blazars. These findings are consistent with the common view that the central engine in RQWLQs, as a population, is akin to that operating in normal QSOs and the primary differences between them might be related to differences in the BLR.



rate research

Read More

We report an extension of our program to search for radio-quiet BL Lac candidates using intra-night optical variability (INOV) as a probe. The present INOV observations cover a well-defined representative set of 10 `radio-quiet weak-emission-line quasars (RQWLQs), selected from a newly published sample of 46 such sources, derived from the Sloan Digital Sky Survey (Data release 7). Intra-night CCD monitoring of the 10 RQWLQs was carried out in 18 sessions lasting at least 3.5 hours. For each session, differential light curves (DLCs) of the target RQWLQ were derived relative to two steady comparison stars monitored simultaneously. Combining these new data with those already published by us for 15 RQWLQs monitored in 30 sessions, we estimate an INOV duty cycle of $sim 3%$ for the RQWLQs, which appears inconsistent with BL Lacs. However, the observed INOV events (which occurred in just two of the sessions) are strong (with a fractional variability amplitude $psi >$ 10%), hence blazar-like. We briefly point out the prospects of an appreciable rise in the estimated INOV duty cycle for RQWLQs with a relatively modest increase in sensitivity for monitoring these rather faint objects.
137 - Parveen Kumar 2015
This is continuation of our programme to search for the elusive radio-quiet BL Lacs, by carrying out a systematic search for intranight optical variability (INOV) in a subset of `weak-line quasars which are already designated as `high-confidence BL Lac candidate and are also known to be radio-quiet. For 6 such radio-quiet weak-line quasars (RQWLQs), we present here new INOV observations taken in 11 sessions of duration >3 hours each. Combining these data with our previously published INOV monitoring of RQWLQs in 19 sessions yields INOV observations for a set of 15 RQWLQs monitored in 30 sessions, each lasting more than 3 hours. The 30 differential light curves, thus obtained for the 15 RQWLQs, were subjected to a statistical analysis using the F-test, and the deduced INOV characteristics of the RQWLQs then compared with those published recently for several prominent AGN classes, also applying the F-test. From our existing INOV observations, there is a hint that RQWLQs in our sample show a significantly higher INOV duty cycle than radio-quiet quasars and radio lobe-dominated quasars. Two sessions when we have detected strong (blazar-like) INOV for RQWLQs are pointed out, and these two RQWLQs are therefore the best known candidates for radio-quiet BL Lacs, deserving to be pursued. For a proper comparison with the INOV properties already established for (brighter) members of several prominent classes of AGN, a factor of 2-3 improvement in the INOV detection threshold for the RQWLQs is needed and it would be very interesting to check if that would yield a significantly higher estimate for INOV duty cycle than is found here.
We present radio and X-ray observations, as well as optical light curves, for a subset of 26 BL Lac candidates from the Sloan Digital Sky Survey (SDSS) lacking strong radio emission and with z<2.2. Half of these 26 objects are shown to be stars, galaxies, or absorbed quasars. We conclude that the other 13 objects are Active Galactic Nuclei (AGN) with abnormally weak emission features; ten of those 13 are definitively radio-quiet, and, for those with available optical light curves, their level of optical flux variability is consistent with radio-quiet quasars. We cannot exclude the possibility that some of these 13 AGN lie on the extremely radio-faint tail of the BL Lac distribution, but our study generally supports the notion that all BL Lac objects are radio-loud. These radio-quiet AGN appear to have intrinsically weak or absent broad emission line regions, and, based on their X-ray properties, we argue that some are low-redshift analogs to weak line quasars (WLQs). SDSS BL Lac searches are so far the only systematic surveys of the SDSS database capable of recovering such exotic low-redshift WLQs. There are 71 more z<2.2 radio-quiet BL Lac candidates already identified in the SDSS not considered here, and many of those might be best unified with WLQs as well. Future studies combining low- and high-redshift WLQ samples will yield new insight on our understanding of the structure and formation of AGN broad emission line regions.
We discuss 6 GHz JVLA observations covering a volume-limited sample of 178 low redshift ($0.2 < z < 0.3$) optically selected QSOs. Our 176 radio detections fall into two clear categories: (1) About $20$% are radio-loud QSOs (RLQs) having spectral luminosities $L_6 gtrsim 10^{,23.2} mathrm{~W~Hz}^{-1}$ primarily generated in the active galactic nucleus (AGN) responsible for the excess optical luminosity that defines a emph{bona fide} QSO. (2) The radio-quiet QSOs (RQQs) have $10^{,21} lesssim L_6 lesssim 10^{,23.2} mathrm{~W~Hz}^{-1}$ and radio sizes $lesssim 10 mathrm{~kpc}$, and we suggest that the bulk of their radio emission is powered by star formation in their host galaxies. Radio silent QSOs ($L_6 lesssim 10^{,21} mathrm{~W~Hz}^{-1}$) are rare, so most RQQ host galaxies form stars faster than the Milky Way; they are not red and dead ellipticals. Earlier radio observations did not have the luminosity sensitivity $L_6 lesssim 10^{,21} mathrm{~W~Hz}^{-1}$ needed to distinguish between such RLQs and RQQs. Strong, generally double-sided, radio emission spanning $gg 10 mathrm{~kpc}$ was found associated with 13 of the 18 RLQ cores having peak flux densities $S_mathrm{p} > 5 mathrm{~mJy~beam}^{-1}$ ($log(L) gtrsim 24$). The radio luminosity function of optically selected QSOs and the extended radio emission associated with RLQs are both inconsistent with simple unified models that invoke relativistic beaming from randomly oriented QSOs to explain the difference between RLQs and RQQs. Some intrinsic property of the AGNs or their host galaxies must also determine whether or not a QSO appears radio loud.
The nature of weak emission-line quasars (WLQs) is probed by comparing the Baldwin effect (BEff) in WLQs and normal quasars (QSOs). We selected 81 high-redshift (z>2.2) and 2 intermediate-redshift (z=1.66 and 1.89) WLQs. Their rest-frame equivalent widths (EWs) of the C IV emission-line and their Eddington ratio were obtained from the Sloan Digital Sky Survey Data Release 7 (SDSS DR7) Quasar Catalogue or from Diamond-Stanic et al. We compare the parameters of WLQs with these of 81 normal quasars from Bright Quasar Survey (BQS) and 155 radio-quiet and radio-intermediate quasars detected by SDSS and Chandra. The influence of the Eddington ratio, Lbol/Ledd, and the X-ray to optical luminosity ratio,alpha_ox, on the BEff is analysed. We find that WLQs follow a different relationship on the EW(CIV)-Lbol/Ledd plane than normal quasars. This relationship disagrees with the super-Eddington hypothesis. The weakness/absence of emission-lines in WLQs does not seem to be caused by their extremely soft ionizing continuum but by low covering factor (Omega) of their broad line region (BLR). Comparing emission-line intensities indicates that the ratios of high-ionization line and low-ionization line regions (i.e. Omega_(HIL)/Omega_(LIL)) are lower in WLQs than in normal QSOs. The covering factor of the regions producing C IV and Lyalpha emission-lines are similar in both WLQs and QSOs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا