No Arabic abstract
Graphene is a valuable 2D platform for plasmonics as illustrated in recent THz and mid-infrared optics experiments. These high-energy plasmons however, couple to the dielectric surface modes giving rise to hybrid plasmon-polariton excitations. Ultra-long-wavelengthes address the low energy end of the plasmon spectrum, in the GHz-THz electronic domain, where intrinsic graphene Dirac plasmons are essentially decoupled from their environment. However experiments are elusive due to the damping by ohmic losses at low frequencies. We demonstrate here a plasma resonance capacitor (PRC) using hexagonal boron-nitride (hBN) encapsulated graphene at cryogenic temperatures in the near ballistic regime. We report on a $100;mathrm{mu m}$ quarter-wave plasmon mode, at $40;mathrm{GHz}$, with a quality factor $Qsimeq2$. The accuracy of the resonant technique yields a precise determination of the electronic compressibility and kinetic inductance, allowing to assess residual deviations from intrinsic Dirac plasmonics. Our capacitor GHz experiment constitutes a first step toward the demonstration of plasma resonance transistors for microwave detection in the sub-THz domain for wireless communications and sensing. It also paves the way to the realization of doping modulated superlattices where plasmon propagation is controlled by Klein tunneling.
Boundaries and edges of a two dimensional system lower its symmetry and are usually regarded, from the point of view of charge transport, as imperfections. Here we present a first study of the behavior of graphene plasmons in a strong magnetic field that provides a different perspective. We show that the plasmon resonance in micron size graphene disks in a strong magnetic field splits into edge and bulk plasmon modes with opposite dispersion relations, and that the edge plasmons at terahertz frequencies develop increasingly longer lifetimes with increasing magnetic field, in spite of potentially more defects close to the graphene edges. This unintuitive behavior is attributed to increasing quasi-one dimensional field-induced confinement and the resulting suppression of the back-scattering. Due to the linear band structure of graphene, the splitting rate of the edge and bulk modes develops a strong doping dependence, which differs from the behavior of traditional semiconductor two-dimensional electron gas (2DEG) systems. We also observe the appearance of a higher order mode indicating an anharmonic confinement potential even in these well-defined circular disks. Our work not only opens an avenue for studying the physics of graphene edges, but also supports the great potential of graphene for tunable terahertz magneto-optical devices.
We report on infrared (IR) nanoscopy of 2D plasmon excitations of Dirac fermions in graphene. This is achieved by confining mid-IR radiation at the apex of a nanoscale tip: an approach yielding two orders of magnitude increase in the value of in-plane component of incident wavevector q compared to free space propagation. At these high wavevectors, the Dirac plasmon is found to dramatically enhance the near-field interaction with mid-IR surface phonons of SiO2 substrate. Our data augmented by detailed modeling establish graphene as a new medium supporting plasmonic effects that can be controlled by gate voltage.
Graphene has raised high expectations as a low-loss plasmonic material in which the plasmon properties can be controlled via electrostatic doping. Here, we analyze realistic configurations, which produce inhomogeneous doping, in contrast to what has been so far assumed in the study of plasmons in nanostructured graphene. Specifically, we investigate backgated ribbons, co-planar ribbon pairs placed at opposite potentials, and individual ribbons subject to a uniform electric field. Plasmons in backgated ribbons and ribbon pairs are similar to those of uniformly doped ribbons, provided the Fermi energy is appropriately scaled to compensate for finite-size effects such as the divergence of the carrier density at the edges. In contrast, the plasmons of a ribbon exposed to a uniform field exhibit distinct dispersion and spatial profiles that considerably differ from uniformly doped ribbons. Our results provide a road map to understand graphene plasmons under realistic electrostatic doping conditions.
We propose a two-dimensional plasmonic platform - periodically patterned monolayer graphene - which hosts topological one-way edge states operable up to infrared frequencies. We classify the band topology of this plasmonic system under time-reversal-symmetry breaking induced by a static magnetic field. At finite doping, the system supports topologically nontrivial bandgaps with mid-gap frequencies up to tens of terahertz. By the bulk-edge correspondence, these bandgaps host topologically protected one-way edge plasmons, which are immune to backscattering from structural defects and subject only to intrinsic material and radiation loss. Our findings reveal a promising approach to engineer topologically robust chiral plasmonic devices and demonstrate a realistic example of high-frequency topological edge state.
In this article we perform the quantization of graphene plasmons using both a macroscopic approach based on the classical average electromagnetic energy and a quantum hydrodynamic model, in which graphene charge carriers are modeled as a charged fluid. Both models allow to take into account the dispersion of graphenes optical response, with the hydrodynamic model also allowing for the inclusion of non-local effects. Using both methods, the electromagnetic field mode-functions, and the respective frequencies, are determined for two different graphene structures. we show how to quantize graphene plasmons, considering that graphene is a dispersive medium, and taking into account both local and nonlocal descriptions. It is found that the dispersion of graphenes optical response leads to a non-trivial normalization condition for the mode-functions. The obtained mode-functions are then used to calculate the decay of an emitter, represented by a dipole, via the excitation of graphene surface plasmon-polaritons. The obtained results are compared with the total spontaneous decay rate of the emitter and a near perfect match is found in the relevant spectral range. It is found that non-local effects in graphenes conductivity, become relevant for the emission rate for small Fermi energies and small distances between the dipole and the graphene sheet.