Do you want to publish a course? Click here

A Planetary Microlensing Event with an Unusually Red Source Star: MOA-2011-BLG-291

171   0   0.0 ( 0 )
 Added by David Bennett
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the analysis of planetary microlensing event MOA-2011-BLG-291, which has a mass ratio of $q=(3.8pm0.7)times10^{-4}$ and a source star that is redder (or brighter) than the bulge main sequence. This event is located at a low Galactic latitude in the survey area that is currently planned for NASAs WFIRST exoplanet microlensing survey. This unusual color for a microlensed source star implies that we cannot assume that the source star is in the Galactic bulge. The favored interpretation is that the source star is a lower main sequence star at a distance of $D_S=4.9pm1.3,$kpc in the Galactic disk. However, the source could also be a turn-off star on the far side of the bulge or a sub-giant in the far side of the Galactic disk if it experiences significantly more reddening than the bulge red clump stars. However, these possibilities have only a small effect on our mass estimates for the host star and planet. We find host star and planet masses of $M_{rm host} =0.15^{+0.27}_{-0.10}M_odot$ and $m_p=18^{+34}_{-12}M_oplus$ from a Bayesian analysis with a standard Galactic model under the assumption that the planet hosting probability does not depend on the host mass or distance. However, if we attempt to measure the host and planet masses with host star brightness measurements from high angular resolution follow-up imaging, the implied masses will be sensitive to the host star distance. The WFIRST exoplanet microlensing survey is expected to use this method to determine the masses for many of the planetary systems that it discovers, so this issue has important design implications for the WFIRST exoplanet microlensing survey.



rate research

Read More

Global second-generation microlensing surveys aim to discover and characterize extrasolar planets and their frequency, by means of round-the-clock high-cadence monitoring of a large area of the Galactic bulge, in a controlled experiment. We report the discovery of a giant planet in microlensing event MOA-2011-BLG-322. This moderate-magnification event, which displays a clear anomaly induced by a second lensing mass, was inside the footprint of our second-generation microlensing survey, involving MOA, OGLE and the Wise Observatory. The event was observed by the survey groups, without prompting alerts that could have led to dedicated follow-up observations. Fitting a microlensing model to the data, we find that the timescale of the event was t_E=23.2 +/-0.8 days, and the mass ratio between the lens star and its companion is q=0.028 +/-0.001. Finite-source effects are marginally detected, and upper limits on them help break some of the degeneracy in the system parameters. Using a Bayesian analysis that incorporates a Galactic structure model, we estimate the mass of the lens at 0.39 +0.45/-0.19 M_sun, at a distance of 7.56 +/-0.91 kpc. Thus, the companion is likely a planet of mass 11.6 +13.4/-5.6 M_J, at a projected separation of 4.3 +1.5/-1.2 AU, rather far beyond the snow line. This is the first pure-survey planet reported from a second-generation microlensing survey, and shows that survey data alone can be sufficient to characterize a planetary model. With the detection of additional survey-only planets, we will be able to constrain the frequency of extrasolar planets near their systems snow lines.
We present observations of the unusual microlensing event OGLE 2003-BLG-235/MOA 2003-BLG-53. In this event a short duration (~7 days) low amplitude deviation in the light curve due a single lens profile was observed in both the MOA and OGLE survey observations. We find that the observed features of the light curve can only be reproduced using a binary microlensing model with an extreme (planetary) mass ratio of 0.0039 +/- (11, 07) for the lensing system. If the lens system comprises a main sequence primary, we infer that the secondary is a planet of about 1.5 Jupiter masses with an orbital radius of ~3 AU.
Because of the development of large-format, wide-field cameras, microlensing surveys are now able to monitor millions of stars with sufficient cadence to detect planets. These new discoveries will span the full range of significance levels including planetary signals too small to be distinguished from the noise. At present, we do not understand where the threshold is for detecting planets. MOA-2011-BLG-293Lb is the first planet to be published from the new surveys, and it also has substantial followup observations. This planet is robustly detected in survey+followup data (Delta chi^2 ~ 5400). The planet/host mass ratio is q=5.3+/- 0.2*10^{-3}. The best fit projected separation is s=0.548+/- 0.005 Einstein radii. However, due to the s-->s^{-1} degeneracy, projected separations of s^{-1} are only marginally disfavored at Delta chi^2=3. A Bayesian estimate of the host mass gives M_L = 0.43^{+0.27}_{-0.17} M_Sun, with a sharp upper limit of M_L < 1.2 M_Sun from upper limits on the lens flux. Hence, the planet mass is m_p=2.4^{+1.5}_{-0.9} M_Jup, and the physical projected separation is either r_perp = ~1.0 AU or r_perp = ~3.4 AU. We show that survey data alone predict this solution and are able to characterize the planet, but the Delta chi^2 is much smaller (Delta chi^2~500) than with the followup data. The Delta chi^2 for the survey data alone is smaller than for any other securely detected planet. This event suggests a means to probe the detection threshold, by analyzing a large sample of events like MOA-2011-BLG-293, which have both followup data and high cadence survey data, to provide a guide for the interpretation of pure survey microlensing data.
138 - H. Park , C. Han , A. Gould 2014
Characterizing a microlensing planet is done from modeling an observed lensing light curve. In this process, it is often confronted that solutions of different lensing parameters result in similar light curves, causing difficulties in uniquely interpreting the lens system, and thus understanding the causes of different types of degeneracy is important. In this work, we show that incomplete coverage of a planetary perturbation can result in degenerate solutions even for events where the planetary signal is detected with a high level of statistical significance. We demonstrate the degeneracy for an actually observed event OGLE-2012-BLG-0455/MOA-2012-BLG-206. The peak of this high-magnification event $(A_{rm max}sim400)$ exhibits very strong deviation from a point-lens model with $Deltachi^{2}gtrsim4000$ for data sets with a total number of measurement 6963. From detailed modeling of the light curve, we find that the deviation can be explained by four distinct solutions, i.e., two very different sets of solutions, each with a two-fold degeneracy. While the two-fold (so-called close/wide) degeneracy is well-understood, the degeneracy between the radically different solutions is not previously known. The model light curves of this degeneracy differ substantially in the parts that were not covered by observation, indicating that the degeneracy is caused by the incomplete coverage of the perturbation. It is expected that the frequency of the degeneracy introduced in this work will be greatly reduced with the improvement of the current lensing survey and follow-up experiments and the advent of new surveys.
We present the discovery of a Neptune-mass planet orbiting a 0.8 +- 0.3 M_Sun star in the Galactic bulge. The planet manifested itself during the microlensing event MOA 2011-BLG-028/OGLE-2011-BLG-0203 as a low-mass companion to the lens star. The analysis of the light curve provides the measurement of the mass ratio: (1.2 +- 0.2) x 10^-4, which indicates the mass of the planet to be 12-60 Earth masses. The lensing system is located at 7.3 +- 0.7 kpc away from the Earth near the direction to Baades Window. The projected separation of the planet, at the time of the microlensing event, was 3.1-5.2 AU. Although the microlens parallax effect is not detected in the light curve of this event, preventing the actual mass measurement, the uncertainties of mass and distance estimation are narrowed by the measurement of the source star proper motion on the OGLE-III images spanning eight years, and by the low amount of blended light seen, proving that the host star cannot be too bright and massive. We also discuss the inclusion of undetected parallax and orbital motion effects into the models, and their influence onto the final physical parameters estimates.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا