Do you want to publish a course? Click here

MOA 2011-BLG-028Lb: a Neptune-mass Microlensing Planet in the Galactic Bulge

67   0   0.0 ( 0 )
 Added by Jan Skowron
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the discovery of a Neptune-mass planet orbiting a 0.8 +- 0.3 M_Sun star in the Galactic bulge. The planet manifested itself during the microlensing event MOA 2011-BLG-028/OGLE-2011-BLG-0203 as a low-mass companion to the lens star. The analysis of the light curve provides the measurement of the mass ratio: (1.2 +- 0.2) x 10^-4, which indicates the mass of the planet to be 12-60 Earth masses. The lensing system is located at 7.3 +- 0.7 kpc away from the Earth near the direction to Baades Window. The projected separation of the planet, at the time of the microlensing event, was 3.1-5.2 AU. Although the microlens parallax effect is not detected in the light curve of this event, preventing the actual mass measurement, the uncertainties of mass and distance estimation are narrowed by the measurement of the source star proper motion on the OGLE-III images spanning eight years, and by the low amount of blended light seen, proving that the host star cannot be too bright and massive. We also discuss the inclusion of undetected parallax and orbital motion effects into the models, and their influence onto the final physical parameters estimates.



rate research

Read More

Global second-generation microlensing surveys aim to discover and characterize extrasolar planets and their frequency, by means of round-the-clock high-cadence monitoring of a large area of the Galactic bulge, in a controlled experiment. We report the discovery of a giant planet in microlensing event MOA-2011-BLG-322. This moderate-magnification event, which displays a clear anomaly induced by a second lensing mass, was inside the footprint of our second-generation microlensing survey, involving MOA, OGLE and the Wise Observatory. The event was observed by the survey groups, without prompting alerts that could have led to dedicated follow-up observations. Fitting a microlensing model to the data, we find that the timescale of the event was t_E=23.2 +/-0.8 days, and the mass ratio between the lens star and its companion is q=0.028 +/-0.001. Finite-source effects are marginally detected, and upper limits on them help break some of the degeneracy in the system parameters. Using a Bayesian analysis that incorporates a Galactic structure model, we estimate the mass of the lens at 0.39 +0.45/-0.19 M_sun, at a distance of 7.56 +/-0.91 kpc. Thus, the companion is likely a planet of mass 11.6 +13.4/-5.6 M_J, at a projected separation of 4.3 +1.5/-1.2 AU, rather far beyond the snow line. This is the first pure-survey planet reported from a second-generation microlensing survey, and shows that survey data alone can be sufficient to characterize a planetary model. With the detection of additional survey-only planets, we will be able to constrain the frequency of extrasolar planets near their systems snow lines.
Because of the development of large-format, wide-field cameras, microlensing surveys are now able to monitor millions of stars with sufficient cadence to detect planets. These new discoveries will span the full range of significance levels including planetary signals too small to be distinguished from the noise. At present, we do not understand where the threshold is for detecting planets. MOA-2011-BLG-293Lb is the first planet to be published from the new surveys, and it also has substantial followup observations. This planet is robustly detected in survey+followup data (Delta chi^2 ~ 5400). The planet/host mass ratio is q=5.3+/- 0.2*10^{-3}. The best fit projected separation is s=0.548+/- 0.005 Einstein radii. However, due to the s-->s^{-1} degeneracy, projected separations of s^{-1} are only marginally disfavored at Delta chi^2=3. A Bayesian estimate of the host mass gives M_L = 0.43^{+0.27}_{-0.17} M_Sun, with a sharp upper limit of M_L < 1.2 M_Sun from upper limits on the lens flux. Hence, the planet mass is m_p=2.4^{+1.5}_{-0.9} M_Jup, and the physical projected separation is either r_perp = ~1.0 AU or r_perp = ~3.4 AU. We show that survey data alone predict this solution and are able to characterize the planet, but the Delta chi^2 is much smaller (Delta chi^2~500) than with the followup data. The Delta chi^2 for the survey data alone is smaller than for any other securely detected planet. This event suggests a means to probe the detection threshold, by analyzing a large sample of events like MOA-2011-BLG-293, which have both followup data and high cadence survey data, to provide a guide for the interpretation of pure survey microlensing data.
We report the discovery of a super-Earth mass planet in the microlensing event MOA-2012-BLG-505. This event has the second shortest event timescale of $t_{rm E}=10 pm 1$ days where the observed data show evidence of planetary companion. Our 15 minute high cadence survey observation schedule revealed the short subtle planetary signature. The system shows the well known close/wide degeneracy. The planet/host-star mass ratio is $q =2.1 times 10^{-4}$ and the projected separation normalized by the Einstein radius is s = 1.1 or 0.9 for the wide and close solutions, respectively. We estimate the physical parameters of the system by using a Bayesian analysis and find that the lens consists of a super-Earth with a mass of $6.7^{+10.7}_{-3.6}M_{oplus}$ orbiting around a brown-dwarf or late M-dwarf host with a mass of $0.10^{+0.16}_{-0.05}M_{odot}$ with a projected star-planet separation of $0.9^{+0.3}_{-0.2}$AU. The system is at a distance of $7.2 pm 1.1$ kpc, i.e., it is likely to be in the Galactic bulge. The small angular Einstein radius ($theta_{rm E}=0.12 pm 0.02$ mas) and short event timescale are typical for a low-mass lens in the Galactic bulge. Such low-mass planetary systems in the Bulge are rare because the detection efficiency of planets in short microlensing events is relatively low. This discovery may suggest that such low mass planetary systems are abundant in the Bulge and currently on-going high cadence survey programs will detect more such events and may reveal an abundance of such planetary systems.
170 - Julia Janczak 2009
We report the detection of sub-Saturn-mass planet MOA-2008-BLG-310Lb and argue that it is the strongest candidate yet for a bulge planet. Deviations from the single-lens fit are smoothed out by finite-source effects and so are not immediately apparent from the light curve. Nevertheless, we find that a model in which the primary has a planetary companion is favored over the single-lens model by Deltachi^2 ~ 880 for an additional three degrees of freedom. Detailed analysis yields a planet/star mass ratio q=(3.3+/-0.3)x10^{-4} and an angular separation between the planet and star within 10% of the angular Einstein radius. The small angular Einstein radius, theta_E=0.155+/-0.011 mas, constrains the distance to the lens to be D_L>6.0 kpc if it is a star (M_L>0.08 M_sun). This is the only microlensing exoplanet host discovered so far that must be in the bulge if it is a star. By analyzing VLT NACO adaptive optics images taken near the baseline of the event, we detect additional blended light that is aligned to within 130 mas of the lensed source. This light is plausibly from the lens, but could also be due to a companion to lens or source, or possibly an unassociated star. If the blended light is indeed due to the lens, we can estimate the mass of the lens, M_L=0.67+/-0.14 M_sun, planet mass m=74+/-17 M_Earth, and projected separation between the planet and host, 1.25+/-0.10 AU, putting it right on the snow line. If not, then the planet has lower mass, is closer to its host and is colder. To distinguish among these possibilities on reasonable timescales would require obtaining Hubble Space Telescope images almost immediately, before the source-lens relative motion of mu=5 mas yr^{-1} causes them to separate substantially.
273 - N. Miyake , T. Sumi , Subo Dong 2010
We report the gravitational microlensing discovery of a sub-Saturn mass planet, MOA-2009-BLG-319Lb, orbiting a K or M-dwarf star in the inner Galactic disk or Galactic bulge. The high cadence observations of the MOA-II survey discovered this microlensing event and enabled its identification as a high magnification event approximately 24 hours prior to peak magnification. As a result, the planetary signal at the peak of this light curve was observed by 20 different telescopes, which is the largest number of telescopes to contribute to a planetary discovery to date. The microlensing model for this event indicates a planet-star mass ratio of q = (3.95 +/- 0.02) x 10^{-4} and a separation of d = 0.97537 +/- 0.00007 in units of the Einstein radius. A Bayesian analysis based on the measured Einstein radius crossing time, t_E, and angular Einstein radius, theta_E, along with a standard Galactic model indicates a host star mass of M_L = 0.38^{+0.34}_{-0.18} M_{Sun} and a planet mass of M_p = 50^{+44}_{-24} M_{Earth}, which is half the mass of Saturn. This analysis also yields a planet-star three-dimensional separation of a = 2.4^{+1.2}_{-0.6} AU and a distance to the planetary system of D_L = 6.1^{+1.1}_{-1.2} kpc. This separation is ~ 2 times the distance of the snow line, a separation similar to most of the other planets discovered by microlensing.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا