Do you want to publish a course? Click here

Peculiar Spin Frequency and Radio Profile Evolution of PSR J1119$-$6127 Following Magnetar-like X-ray Bursts

89   0   0.0 ( 0 )
 Added by Shi Dai
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the spin frequency and profile evolution of the radio pulsar J1119$-$6127 following magnetar-like X-ray bursts from the system in 2016 July. Using data from the Parkes radio telescope, we observe a smooth and fast spin-down process subsequent to the X-ray bursts resulting in a net change in the pulsar rotational frequency of $Delta uapprox-4times10^{-4}$,Hz. During the transition, a net spin-down rate increase of $Deltadot uapprox-1times10^{-10}$,Hz,s$^{-1}$ is observed, followed by a return of $dot{ u}$ to its original value. In addition, the radio pulsations disappeared after the X-ray bursts and reappeared about two weeks later with the flux density at 1.4,GHz increased by a factor of five. The flux density then decreased and undershot the normal flux density followed by a slow recovery back to normal. The pulsars integrated profile underwent dramatic and short-term changes in total intensity, polarization and position angle. Despite the complex evolution, we observe correlations between the spin-down rate, pulse profile shape and radio flux density. Strong single pulses have been detected after the X-ray bursts with their energy distributions evolving with time. The peculiar but smooth spin frequency evolution of PSR~J1119$-$6127 accompanied by systematic pulse profile and flux density changes are most likely to be a result of either reconfiguration of the surface magnetic fields or particle winds triggered by the X-ray bursts. The recovery of spin-down rate and pulse profile to normal provides us the best case to study the connection between high magnetic-field pulsars and magnetars.



rate research

Read More

Rotation-powered pulsars and magnetars are two different observational manifestations of neutron stars: rotation powered pulsars are rapidly spinning objects that are mostly observed as pulsating radio sources, while magnetars, neutron stars with the highest known magnetic fields, often emit short-duration X-ray bursts. Here we report simultaneous observations of the high-magnetic-field radio pulsar PSR J1119-6127 at X-ray, with XMM-Newton & NuSTAR, and at radio energies with Parkes radio telescope, during a period of magnetar-like bursts. The rotationally powered radio emission shuts off coincident with the occurrence of multiple X-ray bursts, and recovers on a time scale of ~70 seconds. These observations of related radio and X-ray phenomena further solidify the connection between radio pulsars and magnetars, and suggest that the pair plasma produced in bursts can disrupt the acceleration mechanism of radio emitting particles.
We report on 2.4 yr of radio timing measurements of the magnetar PSR J1622$-$4950 using the Parkes telescope, between 2011 November and 2014 March. During this period the torque on the neutron star (inferred from the rotational frequency derivative) varied greatly, though much less erratically than in the 2 yr following its discovery in 2009. During the last year of our measurements the frequency derivative decreased in magnitude monotonically by 20%, to a value of $-1.3times10^{-13}$ s$^{-2}$, a factor of 8 smaller than when discovered. The flux density continued to vary greatly during our monitoring through 2014 March, reaching a relatively steady low level after late 2012. The pulse profile varied secularly on a similar timescale as the flux density and torque. A relatively rapid transition in all three properties is evident in early 2013. After PSR J1622$-$4950 was detected in all of our 87 observations up to 2014 March, we did not detect the magnetar in our resumed monitoring starting in 2015 January and have not detected it in any of the 30 observations done through 2016 September.
157 - R.P.Mignani 2007
Recent radio observations have unveiled the existence of a number of radio pulsars with spin-down derived magnetic fields in the magnetar range. However, their observational properties appears to be more similar to classical radio pulsars than to magnetars. To shed light on this puzzle we first have to determine whether the spin-down derived magnetic field values for these radio pulsars are indeed representative of the actual neutron star magnetic field or if they are polluted, e.g. by the effects of a torque from a fallback disk. To investigate this possibility, we have performed deep IR observations of one of these high magnetic field radio pulsars (PSR J1119-6127) with the ESO VLT to search for IR emission which can be associated with a disk. No IR emission is detected from the pulsar position down to J=24, H=23, Ks=22. By comparing our flux upper limits with the predictions of fallback disk models, we have found that we can only exclude the presence of a disk with accretion rate dot M >3x10^16 g/s. This lower limit cannot rule out the presence of a substantial disk torque on the pulsar, which would then lead to overestimate the value of the magnetic field inferred from P and dot P.
After spending almost a decade in a radio-quiet state, the Anomalous X-ray Pulsar XTE J1810-197 turned back on in early December 2018. We have observed this radio magnetar at 1.5 GHz with ~daily cadence since the first detection of radio re-activation on 8 December 2018. In this paper, we report on the current timing properties of XTE J1810-197 and find that the magnitude of the spin frequency derivative has increased by a factor of 2.6 over our 48-day data set. We compare our results with the spin-down evolution reported during its previous active phase in the radio band. We also present total intensity pulse profiles at five different observing frequencies between 1.5 and 8.4 GHz, collected with the Lovell and the Effelsberg telescopes. The profile evolution in our data set is less erratic than what was reported during the previous active phase, and can be seen varying smoothly between observations. Profiles observed immediately after the outburst show the presence of at least five cycles of a very stable ~50-ms periodicity in the main pulse component that lasts for at least tens of days. This remarkable structure is seen across the full range of observing frequencies.
160 - G.L. Israel , M. Burgay , N. Rea 2020
We report on simultaneous radio and X-ray observations of the radio-emitting magnetar 1E1547.0-5408 on 2009 January 25 and February 3, with the 64-m Parkes radio telescope and the Chandra and XMM-Newton X-ray observatories. The magnetar was observed in a period of intense X-ray bursting activity and enhanced X-ray emission. We report here on the detection of two radio bursts from 1E1547.0-5408, reminiscent of Fast Radio Bursts (FRBs). One of the radio bursts was anticipated by ~1s (about half a rotation period of the pulsar) by a bright SGR-like X-ray burst, resulting in a F_radio/F_X ~ 10^-9. Radio pulsations were not detected during the observation showing the FRB-like radio bursts, while they were detected in the previous radio observation. We also found that the two radio bursts are neither aligned with the latter radio pulsations nor with the peak of the X-ray pulse profile (phase shift of ~0.2). Comparing the luminosity of these FRB-like bursts and those reported from SGR1935+2154, we find that the wide range in radio efficiency and/or luminosity of magnetar bursts in the Galaxy may bridge the gap between ordinary pulsar radio bursts and the extragalactic FRB phenomenon.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا