Do you want to publish a course? Click here

Continuous and Orientation-preserving Correspondences via Functional Maps

57   0   0.0 ( 0 )
 Added by Jing Ren
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We propose a method for efficiently computing orientation-preserving and approximately continuous correspondences between non-rigid shapes, using the functional maps framework. We first show how orientation preservation can be formulated directly in the functional (spectral) domain without using landmark or region correspondences and without relying on external symmetry information. This allows us to obtain functional maps that promote orientation preservation, even when using descriptors, that are invariant to orientation changes. We then show how higher quality, approximately continuous and bijective pointwise correspondences can be obtained from initial functional maps by introducing a novel refinement technique that aims to simultaneously improve the maps both in the spectral and spatial domains. This leads to a general pipeline for computing correspondences between shapes that results in high-quality maps, while admitting an efficient optimization scheme. We show through extensive evaluation that our approach improves upon state-of-the-art results on challenging isometric and non-isometric correspondence benchmarks according to both measures of continuity and coverage as well as producing semantically meaningful correspondences as measured by the distance to ground truth maps.

rate research

Read More

We consider the problem of establishing dense correspondences within a set of related shapes of strongly varying geometry. For such input, traditional shape matching approaches often produce unsatisfactory results. We propose an ensemble optimization method that improves given coarse correspondences to obtain dense correspondences. Following ideas from minimum description length approaches, it maximizes the compactness of the induced shape space to obtain high-quality correspondences. We make a number of improvements that are important for computer graphics applications: Our approach handles meshes of general topology and handles partial matching between input of varying topology. To this end we introduce a novel part-based generative statistical shape model. We develop a novel analysis algorithm that learns such models from training shapes of varying topology. We also provide a novel synthesis method that can generate new instances with varying part layouts and subject to generic variational constraints. In practical experiments, we obtain a substantial improvement in correspondence quality over state-of-the-art methods. As example application, we demonstrate a system that learns shape families as assemblies of deformable parts and permits real-time editing with continuous and discrete variability.
In this paper, we address the problem of building dense correspondences between human images under arbitrary camera viewpoints and body poses. Prior art either assumes small motion between frames or relies on local descriptors, which cannot handle large motion or visually ambiguous body parts, e.g., left vs. right hand. In contrast, we propose a deep learning framework that maps each pixel to a feature space, where the feature distances reflect the geodesic distances among pixels as if they were projected onto the surface of a 3D human scan. To this end, we introduce novel loss functions to push features apart according to their geodesic distances on the surface. Without any semantic annotation, the proposed embeddings automatically learn to differentiate visually similar parts and align different subjects into an unified feature space. Extensive experiments show that the learned embeddings can produce accurate correspondences between images with remarkable generalization capabilities on both intra and inter subjects.
142 - Jerome Revaud 2015
We propose a novel approach for optical flow estimation , targeted at large displacements with significant oc-clusions. It consists of two steps: i) dense matching by edge-preserving interpolation from a sparse set of matches; ii) variational energy minimization initialized with the dense matches. The sparse-to-dense interpolation relies on an appropriate choice of the distance, namely an edge-aware geodesic distance. This distance is tailored to handle occlusions and motion boundaries -- two common and difficult issues for optical flow computation. We also propose an approximation scheme for the geodesic distance to allow fast computation without loss of performance. Subsequent to the dense interpolation step, standard one-level variational energy minimization is carried out on the dense matches to obtain the final flow estimation. The proposed approach, called Edge-Preserving Interpolation of Correspondences (EpicFlow) is fast and robust to large displacements. It significantly outperforms the state of the art on MPI-Sintel and performs on par on Kitti and Middlebury.
Repetitive patterns are ubiquitous in natural and human-made objects, and can be created with a variety of tools and methods. Manual authoring provides unmatched degree of freedom and control, but can require significant artistic expertise and manual labor. Computational methods can automate parts of the manual creation process, but are mainly tailored for discrete pixels or elements instead of more general continuous structures. We propose an example-based method to synthesize continuous curve patterns from exemplars. Our main idea is to extend prior sample-based discrete element synthesis methods to consider not only sample positions (geometry) but also their connections (topology). Since continuous structures can exhibit higher complexity than discrete elements, we also propose robust, hierarchical synthesis to enhance output quality. Our algorithm can generate a variety of continuous curve patterns fully automatically. For further quality improvement and customization, we also present an autocomplete user interface to facilitate interactive creation and iterative editing. We evaluate our methods and interface via different patterns, ablation studies, and comparisons with alternative methods.
The animation community has spent significant effort trying to ease rigging procedures. This is necessitated because the increasing availability of 3D data makes manual rigging infeasible. However, object animations involve understanding elaborate geometry and dynamics, and such knowledge is hard to infuse even with modern data-driven techniques. Automatic rigging methods do not provide adequate control and cannot generalize in the presence of unseen artifacts. As an alternative, one can design a system for one shape and then transfer it to other objects. In previous work, this has been implemented by solving the dense point-to-point correspondence problem. Such an approach requires a significant amount of supervision, often placing hundreds of landmarks by hand. This paper proposes a functional approach for skeleton transfer that uses limited information and does not require a complete match between the geometries. To do so, we suggest a novel representation for the skeleton properties, namely the functional regressor, which is compact and invariant to different discretizations and poses. We consider our functional regressor a new operator to adopt in intrinsic geometry pipelines for encoding the pose information, paving the way for several new applications. We numerically stress our method on a large set of different shapes and object classes, providing qualitative and numerical evaluations of precision and computational efficiency. Finally, we show a preliminar transfer of the complete rigging scheme, introducing a promising direction for future explorations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا