No Arabic abstract
The pressure evolution of the Raman active electronic excitations of the transition metal dichalcogenides 2H-TaS$_2$ is followed through the pressure phase diagram embedding incommensurate charge-density-wave and superconducting states. At high pressure, the charge-density-wave is found to collapse at 8.5~GPa. In the coexisting charge-density-wave and superconducting orders, we unravel a strong in-gap superconducting mode, attributed to a Higgs mode, coexisting with the expected incoherent Cooper-pair breaking signature. The latter remains in the pure superconducting state reached above 8.5~GPa. Our report constitutes the first observation of such Raman active Higgs mode since the longstanding unique case 2H-NbSe$_2$.
Despite being usually considered two competing phenomena, charge-density-wave and superconductivity coexist in few systems, the most emblematic one being the transition metal dichalcogenide 2H-NbSe$_2$. This unusual condition is responsible for specific Raman signatures across the two phase transitions in this compound. While the appearance of a soft phonon mode is a well-established fingerprint of the charge-density-wave order, the nature of the sharp sub-gap mode emerging below the superconducting temperature is still under debate. In this work we use the external pressure as a knob to unveil the delicate interplay between the two orders, and consequently the nature of the superconducting mode. Thanks to an advanced extreme-conditions Raman technique we are able to follow the pressure evolution and the simultaneous collapse of the two intertwined charge density wave and superconducting modes. The comparison with microscopic calculations in a model system supports the Higgs-type nature of the superconducting mode and suggests that charge-density-wave and superconductivity in 2H-NbSe$_2$ involve mutual electronic degrees of freedom. These findings fill knowledge gap on the electronic mechanisms at play in transition metal dichalcogenides, a crucial step to fully exploit their properties in few-layers systems optimized for devices applications.
The interplay between charge density wave (CDW) order and superconductivity has attracted much attention. This is the central issue of along standing debate in simple transition metal dichalcogenides without strong electronic correlations, such as 2H-NbSe$_2$, in which twosuch phases coexist. The importance of anisotropic electron-phonon interaction has been recently highlighted from both theoretical and experimental point of view, and explains some of the key features of the formation of the CDW in this system. On the other hand, other aspects, such as the effects of anharmonicity, remain poorly understood despite their manifest importance in such soft-phonon driven phase transition. At the theoretical level in particular, their prohibitive computational price usually prevents their investigation within conventional perturbative approaches.Here, we address this issue using a combination of high resolution inelastic X-ray scattering measurements of the phonon dispersion, as afunction of temperature and pressure, with state of the art ab initio calculations. By explicitly taking into account anharmonic effects, we obtain an accurate, quantitative, description of the (P,T) dependence of the phonon spectrum, accounting for the rapid destruction of the CDW under pressure by zero mode vibrations - or quantum fluctuations - of the lattice. The low-energy longitudinal acoustic mode that drives the CDW transition barely contributes to superconductivity, explaining the insensitivity of the superconducting critical temperature to the CDW transition.
The temperature dependence of the phonon spectrum in the superconducting transition metal dichalcogenide 2H-NbS$_2$ is measured by diffuse and inelastic x-ray scattering. A deep, wide and strongly temperature dependent softening, of the two lowest energy longitudinal phonons bands, appears along the $mathrm{Gamma M}$ symmetry line in reciprocal space. In sharp contrast to the iso-electronic compounds 2H-NbSe$_2$, the soft phonons energies are finite, even at very low temperature, and no charge density wave instability occurs, in disagreement with harmonic ab-initio calculations. We show that 2H-NbS$_2$ is at the verge of the charge density wave transition and its occurrence is only suppressed by the large anharmonic effects. Moreover, the anharmonicity and the electron phonon coupling both show a strong in-plane anisotropy.
We report on the effects of hydrostatic pressure (HP) on the charge density wave observed in underdoped cuprates. We studied YBa$_2$Cu$_3$O$_{6.6}$ ($T_c$=61 K) using high-resolution inelastic x-ray scattering (IXS), and reveal an extreme sensitivity of the phonon anomalies related to the charge density wave (CDW) order to HP. The amplitudes of the normal state broadening and superconductivity induced phonon softening at Q$_{CDW}$ rapidly decrease as HP is applied, resulting in the complete suppression of signatures of the CDW below $sim$1 GPa. Additional IXS measurements on YBa$_2$Cu$_3$O$_{6.75}$ demonstrate that this very rapid effect cannot be explained by pressure-induced modification of the doping level and highlight the different role of external pressure and doping in tuning the phase diagram of the cuprates. Our results provide new insights into the mechanisms underlying the CDW formation and its interplay with superconductivity.
As superconductors are thinned down to the 2D limit, their critical temperature $T_c$ typically decreases. Here we report the opposite behavior, a substantial enhancement of $T_c$ with decreasing thickness, in 2D crystalline superconductor 2H-TaS$_2$. Remarkably, in the monolayer limit, $T_c$ increases to 3.4 K compared to 0.8 K in the bulk. Accompanying this trend in superconductivity, we observe suppression of the charge-density wave (CDW) transition with decreasing thickness. To explain these trends, we perform electronic structure calculations showing that a reduction of the CDW amplitude results in a substantial increase of the density of states at the Fermi energy, which contributes to the enhancement of $T_c$. Our results establish ultra-thin 2H-TaS$_2$ as an ideal platform to study the competition between CDW order and superconductivity.