Do you want to publish a course? Click here

Time-domain effective-one-body gravitational waveforms for coalescing compact binaries with nonprecessing spins, tides and self-spin effects

69   0   0.0 ( 0 )
 Added by Alessandro Nagar
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present TEOBResumS, a new effective-one-body (EOB) waveform model for nonprecessing (spin-aligned) and tidally interacting compact binaries.Spin-orbit and spin-spin effects are blended together by making use of the concept of centrifugal EOB radius. The point-mass sector through merger and ringdown is informed by numerical relativity (NR) simulations of binary black holes (BBH) computed with the SpEC and BAM codes. An improved, NR-based phenomenological description of the postmerger waveform is developed.The tidal sector of TEOBResumS describes the dynamics of neutron star binaries up to merger and incorporates a resummed attractive potential motivated by recent advances in the post-Newtonian and gravitational self-force description of relativistic tidal interactions. Equation-of-state dependent self-spin interactions (monopole-quadrupole effects) are incorporated in the model using leading-order post-Newtonian results in a new expression of the centrifugal radius. TEOBResumS is compared to 135 SpEC and 19 BAM BBH waveforms. The maximum unfaithfulness to SpEC data $bar{F}$ -- at design Advanced-LIGO sensitivity and evaluated with total mass $M$ varying between $10M_odot leq M leq 200 M_odot$ --is always below $2.5 times 10^{-3}$ except for a single outlier that grazes the $7.1 times 10^{-3}$ level. When compared to BAM data, $bar{F}$ is smaller than $0.01$ except for a single outlier in one of the corners of the NR-covered parameter space, that reaches the $0.052$ level.TEOBResumS is also compatible, up to merger, to high end NR waveforms from binary neutron stars with spin effects and reduced initial eccentricity computed with the BAM and THC codes. The model is designed to generate accurate templates for the analysis of LIGO-Virgo data through merger and ringdown. We demonstrate its use by analyzing the publicly available data for GW150914.



rate research

Read More

Extracting the unique information on ultradense nuclear matter from the gravitational waves emitted by merging, neutron-star binaries requires robust theoretical models of the signal. We develop a novel effective-one-body waveform model that includes, for the first time, dynamic (instead of only adiabatic) tides of the neutron star, as well as the merger signal for neutron-star--black-hole binaries. We demonstrate the importance of the dynamic tides by comparing our model against new numerical-relativity simulations of nonspinning neutron-star--black-hole binaries spanning more than 24 gravitational-wave cycles, and to other existing numerical simulations for double neutron-star systems. Furthermore, we derive an effective description that makes explicit the dependence of matter effects on two key parameters: tidal deformability and fundamental oscillation frequency.
We develop the foundations of an effective-one-body (EOB) model for eccentric binary coalescences that includes the conservative dynamics, radiation reaction, and gravitational waveform modes from the inspiral and the merger-ringdown signals. We use the same approach as is commonly employed in black-hole perturbation theory by introducing a relativistic parameterization of the dynamics that is defined by the orbital geometry and consists of a set of phase variables and quantities that evolve only due to gravitational radiation reaction. Specializing to nonspinning binaries, we derive the EOB evolution equations and compute the binarys radiative multipole moments that determine the gravitational waves through a decomposition into the fundamental frequencies of the motion. The major differences between our treatment and the quasi-Keplerian approach often used in post-Newtonian (PN) calculations are that the orbital parameters describe strong-field dynamics, and that expressing the multipole moments in terms of the frequencies simplifies the calculations and also results in an unambiguous orbit-averaging operation. While our description of the conservative dynamics is fully relativistic, we limit explicit derivations in the radiative sector to 1.5PN order for simplicity. This already enables us to establish methods for computing both instantaneous and hereditary contributions to the gravitational radiation in EOB coordinates that have straightforward extensions to higher PN order. The weak-field, small eccentricity limit of our results for the orbit-averaged fluxes of energy and angular momentum agrees with known PN results when expressed in terms of gauge-invariant quantities. We further address considerations for the numerical implementation of the model and the completion of the waveforms to include the merger and ringdown signals, and provide illustrative results.
While most binary inspirals are expected to have circularized before they enter the LIGO/Virgo frequency band, a small fraction of those binaries could have non-negligible orbital eccentricity depending on their formation channel. Hence, it is important to accurately model eccentricity effects in waveform models used to detect those binaries, infer their properties, and shed light on their astrophysical environment. We develop a multipolar effective-one-body (EOB) eccentric waveform model for compact binaries whose components have spins aligned or anti-aligned with the orbital angular momentum. The waveform model contains eccentricity effects in the radiation-reaction force and gravitational modes through second post-Newtonian (PN) order, including tail effects, and spin-orbit and spin-spin couplings. We recast the PN-expanded, eccentric radiation-reaction force and modes in factorized form so that the newly derived terms can be directly included in the state-of-the-art, quasi-circular--orbit EOB model currently used in LIGO/Virgo analyses (i.e., the SEOBNRv4HM model).
We present a frequency domain reduced order model (ROM) for the aligned-spin effective-one-body (EOB) model for binary black holes (BBHs) SEOBNRv4HM that includes the spherical harmonics modes $(ell, |m|) = (2,1),(3,3),(4,4),(5,5)$ beyond the dominant $(ell, |m|) = (2,2)$ mode. These higher modes are crucial to accurately represent the waveform emitted from asymmetric BBHs. We discuss a decomposition of the waveform, extending other methods in the literature, that allows us to accurately and efficiently capture the morphology of higher mode waveforms. We show that the ROM is very accurate with median (maximum) values of the unfaithfulness against SEOBNRv4HM lower than $0.001% (0.03%)$ for total masses in $[2.8,100] M_odot$. For a total mass of $M = 300 M_odot$ the median (maximum) value of the unfaithfulness increases up to $0.004% (0.17%)$. This is still at least an order of magnitude lower than the estimated accuracy of SEOBNRv4HM compared to numerical relativity simulations. The ROM is two orders of magnitude faster in generating a waveform compared to SEOBNRv4HM. Data analysis applications typically require $mathcal{O}(10^6-10^8)$ waveform evaluations for which SEOBNRv4HM is in general too slow. The ROM is therefore crucial to allow the SEOBNRv4HM waveform to be used in searches and Bayesian parameter inference. We present a targeted parameter estimation study that shows the improvements in measuring binary parameters when using waveforms that includes higher modes and compare against three other waveform models.
Tidal effects have an important impact on the late inspiral of compact binary systems containing neutron stars. Most current models of tidal deformations of neutron stars assume that the tidal bulge is directly related to the tidal field generated by the companion, with a constant response coefficient. However, if the orbital motion approaches a resonance with one of the internal modes of the neutron star, this adiabatic description of tidal effects starts to break down, and the tides become dynamical. In this paper, we consider dynamical tides in general relativity due to the quadrupolar fundamental oscillation mode of a neutron star. We devise a description of the effects of the neutron stars finite size on the orbital dynamics based on an effective point-particle action augmented by dynamical quadrupolar degrees of freedom. We analyze the post-Newtonian and test-particle approximations of this model and incorporate the results into an effective-one-body Hamiltonian. This enables us to extend the description of dynamical tides over the entire inspiral. We demonstrate that dynamical tides give a significant enhancement of matter effects compared to adiabatic tides, at least for neutron stars with large radii and for low mass-ratio systems, and should therefore be included in accurate models for gravitational-wave data analysis.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا