Do you want to publish a course? Click here

Frequency domain reduced order model of aligned-spin effective-one-body waveforms with higher-order modes

107   0   0.0 ( 0 )
 Added by Roberto Cotesta
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a frequency domain reduced order model (ROM) for the aligned-spin effective-one-body (EOB) model for binary black holes (BBHs) SEOBNRv4HM that includes the spherical harmonics modes $(ell, |m|) = (2,1),(3,3),(4,4),(5,5)$ beyond the dominant $(ell, |m|) = (2,2)$ mode. These higher modes are crucial to accurately represent the waveform emitted from asymmetric BBHs. We discuss a decomposition of the waveform, extending other methods in the literature, that allows us to accurately and efficiently capture the morphology of higher mode waveforms. We show that the ROM is very accurate with median (maximum) values of the unfaithfulness against SEOBNRv4HM lower than $0.001% (0.03%)$ for total masses in $[2.8,100] M_odot$. For a total mass of $M = 300 M_odot$ the median (maximum) value of the unfaithfulness increases up to $0.004% (0.17%)$. This is still at least an order of magnitude lower than the estimated accuracy of SEOBNRv4HM compared to numerical relativity simulations. The ROM is two orders of magnitude faster in generating a waveform compared to SEOBNRv4HM. Data analysis applications typically require $mathcal{O}(10^6-10^8)$ waveform evaluations for which SEOBNRv4HM is in general too slow. The ROM is therefore crucial to allow the SEOBNRv4HM waveform to be used in searches and Bayesian parameter inference. We present a targeted parameter estimation study that shows the improvements in measuring binary parameters when using waveforms that includes higher modes and compare against three other waveform models.



rate research

Read More

139 - A. Freise , G. Heinzel , H. Lueck 2003
FINESSE is a software simulation that allows to compute the optical properties of laser interferometers as they are used by the interferometric gravitational-wave detectors today. It provides a fast and versatile tool which has proven to be very useful during the design and the commissioning of gravitational-wave detectors. The basic algorithm of FINESSE numerically computes the light amplitudes inside an interferometer using Hermite-Gauss modes in the frequency domain. In addition, FINESSE provides a number of commands to easily generate and plot the most common signals like, for example, power enhancement, error or control signals, transfer functions and shot-noise-limited sensitivities. Among the various simulation tools available to the gravitational wave community today, FINESSE is the most advanced general optical simulation that uses the frequency domain. It has been designed to allow general analysis of user defined optical setups while being easy to install and easy to use.
While most binary inspirals are expected to have circularized before they enter the LIGO/Virgo frequency band, a small fraction of those binaries could have non-negligible orbital eccentricity depending on their formation channel. Hence, it is important to accurately model eccentricity effects in waveform models used to detect those binaries, infer their properties, and shed light on their astrophysical environment. We develop a multipolar effective-one-body (EOB) eccentric waveform model for compact binaries whose components have spins aligned or anti-aligned with the orbital angular momentum. The waveform model contains eccentricity effects in the radiation-reaction force and gravitational modes through second post-Newtonian (PN) order, including tail effects, and spin-orbit and spin-spin couplings. We recast the PN-expanded, eccentric radiation-reaction force and modes in factorized form so that the newly derived terms can be directly included in the state-of-the-art, quasi-circular--orbit EOB model currently used in LIGO/Virgo analyses (i.e., the SEOBNRv4HM model).
We present TEOBResumS, a new effective-one-body (EOB) waveform model for nonprecessing (spin-aligned) and tidally interacting compact binaries.Spin-orbit and spin-spin effects are blended together by making use of the concept of centrifugal EOB radius. The point-mass sector through merger and ringdown is informed by numerical relativity (NR) simulations of binary black holes (BBH) computed with the SpEC and BAM codes. An improved, NR-based phenomenological description of the postmerger waveform is developed.The tidal sector of TEOBResumS describes the dynamics of neutron star binaries up to merger and incorporates a resummed attractive potential motivated by recent advances in the post-Newtonian and gravitational self-force description of relativistic tidal interactions. Equation-of-state dependent self-spin interactions (monopole-quadrupole effects) are incorporated in the model using leading-order post-Newtonian results in a new expression of the centrifugal radius. TEOBResumS is compared to 135 SpEC and 19 BAM BBH waveforms. The maximum unfaithfulness to SpEC data $bar{F}$ -- at design Advanced-LIGO sensitivity and evaluated with total mass $M$ varying between $10M_odot leq M leq 200 M_odot$ --is always below $2.5 times 10^{-3}$ except for a single outlier that grazes the $7.1 times 10^{-3}$ level. When compared to BAM data, $bar{F}$ is smaller than $0.01$ except for a single outlier in one of the corners of the NR-covered parameter space, that reaches the $0.052$ level.TEOBResumS is also compatible, up to merger, to high end NR waveforms from binary neutron stars with spin effects and reduced initial eccentricity computed with the BAM and THC codes. The model is designed to generate accurate templates for the analysis of LIGO-Virgo data through merger and ringdown. We demonstrate its use by analyzing the publicly available data for GW150914.
Current template-based gravitational wave searches for compact binary coalescences (CBC) use waveform models that neglect the higher order modes content of the gravitational radiation emitted, considering only the quadrupolar $(ell,|m|)=(2,2)$ modes. We study the effect of such a neglection for the case of aligned-spin CBC searches for equal-spin (and non-spinning) binary black holes in the context of t
We investigate the observability of higher harmonics in gravitational wave signals emitted during the coalescence of binary black holes. We decompose each mode into an overall amplitude, dependent upon the masses and spins of the system, and an orientation-dependent term, dependent upon the inclination and polarization of the source. Using this decomposition, we investigate the significance of higher modes over the parameter space and show that the $ell = 3$, $m = 3$ mode is most significant across much of the sensitive band of ground-based interferometric detectors, with the $ell = 4$, $m = 4$ having a significant contribution at high masses. We introduce the higher mode signal-to-noise ratio (SNR), and show that a simple threshold on this SNR can be used as a criterion for observation of higher harmonics. Finally, we investigate observability in a population of binaries and observe that higher harmonics will only be observable in a few percent of binaries, typically those with unequal masses and viewed close to edge-on.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا