Do you want to publish a course? Click here

Significant Excess of ElectronLike Events in the MiniBooNE Short-Baseline Neutrino Experiment

98   0   0.0 ( 0 )
 Added by William Louis
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

The MiniBooNE experiment at Fermilab reports results from an analysis of $ u_e$ appearance data from $12.84 times 10^{20}$ protons on target in neutrino mode, an increase of approximately a factor of two over previously reported results. A $ u_e$ charged-current quasielastic event excess of $381.2 pm 85.2$ events ($4.5 sigma$) is observed in the energy range $200<E_ u^{QE}<1250$~MeV. Combining these data with the $bar u_e$ appearance data from $11.27 times 10^{20}$ protons on target in antineutrino mode, a total $ u_e$ plus $bar u_e$ charged-current quasielastic event excess of $460.5 pm 99.0$ events ($4.7 sigma$) is observed. If interpreted in a two-neutrino oscillation model, ${ u}_{mu} rightarrow { u}_e$, the best oscillation fit to the excess has a probability of $21.1%$, while the background-only fit has a $chi^2$ probability of $6 times 10^{-7}$ relative to the best fit. The MiniBooNE data are consistent in energy and magnitude with the excess of events reported by the Liquid Scintillator Neutrino Detector (LSND), and the significance of the combined LSND and MiniBooNE excesses is $6.0 sigma$. A two-neutrino oscillation interpretation of the data would require at least four neutrino types and indicate physics beyond the three neutrino paradigm.Although the data are fit with a two-neutrino oscillation model, other models may provide better fits to the data.



rate research

Read More

The Short-Baseline Neutrino, or SBN, program consists of three liquid argon time projection chamber detectors located along the Booster Neutrino Beam at the Fermi National Accelerator Laboratory. Its main goals include searches for new physics - particularly eV-scale sterile neutrinos, detailed studies of neutrino-nucleus interactions at the GeV energy scale, and the advancement of the liquid argon detector technology that will also be used in the DUNE/LBNF long-baseline neutrino experiment in the next decade. Here we review these science goals and the current experimental status of SBN.
194 - Andrew O. Bazarko 1999
The Booster Neutrino Experiment at Fermilab is preparing to search for muon to electron neutrino oscillations. The experiment is designed to make a conclusive statement about LSNDs neutrino oscillation evidence. The experimental prospects are outlined in light of the current results from LSND and KARMEN.
167 - Teppei Katori 2020
In this short review, we discuss the 2020 MiniBooNE electron neutrino appearance oscillation results with special attention on background predictions relevant to the MiniBooNE oscillation results and other (anti)electron neutrino appearance search experiments.
The sensitivity of the Deep Underground Neutrino Experiment (DUNE) to neutrino oscillation is determined, based on a full simulation, reconstruction, and event selection of the far detector and a full simulation and parameterized analysis of the near detector. Detailed uncertainties due to the flux prediction, neutrino interaction model, and detector effects are included. DUNE will resolve the neutrino mass hierarchy to a precision of 5$sigma$, for all $delta_{mathrm{CP}}$ values, after 2 years of running with the nominal detector design and beam configuration. It has the potential to observe charge-parity violation in the neutrino sector to a precision of 3$sigma$ (5$sigma$) after an exposure of 5 (10) years, for 50% of all $delta_{mathrm{CP}}$ values. It will also make precise measurements of other parameters governing long-baseline neutrino oscillation, and after an exposure of 15 years will achieve a similar sensitivity to $sin^{2} 2theta_{13}$ to current reactor experiments.
The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNEs scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا