Do you want to publish a course? Click here

Observation of the quantum valley Hall state in ballistic graphene superlattices

58   0   0.0 ( 0 )
 Added by Satoshi Moriyama
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

In graphene superlattices, bulk topological currents can lead to long-range charge-neutral flow and non-local resistance near Dirac points. A ballistic version of these phenomena has never been explored. Here, we report transport properties of ballistic graphene superlattices. This allows us to study and exploit giant non-local resistances with a large valley Hall angle without a magnetic field. In the low-temperature regime, a crossover occurs toward a new state of matter, referred to as a quantum valley Hall state (qVHS), which is an analog of the quantum Hall state without a magnetic field. Furthermore, a non-local resistance plateau, implying rigidity of the qVHS, emerges as a function of magnetic field, and the collapse of this plateau is observed, which is considered as a manifestation of valley/pseudospin magnetism.



rate research

Read More

The structure of edge modes at the boundary of quantum Hall (QH) phases forms the basis for understanding low energy transport properties. In particular, the presence of ``upstream modes, moving against the direction of charge current flow, is critical for the emergence of renormalized modes with exotic quantum statistics. Detection of excess noise at the edge is a smoking gun for the presence of upstream modes. Here we report on noise measurements at the edges of fractional QH (FQH) phases realized in dual graphite-gated bilayer graphene devices. A noiseless dc current is injected at one of the edge contacts, and the noise generated at contacts at $L= 4,mu$m or $10,mu$m away along the upstream direction is studied. For integer and particle-like FQH states, no detectable noise is measured. By contrast, for ``hole-conjugate FQH states, we detect a strong noise proportional to the injected current, unambiguously proving the existence of upstream modes. The noise magnitude remaining independent of length together with a remarkable agreement with our theoretical analysis demonstrates the ballistic nature of upstream energy transport, quite distinct from the diffusive propagation reported earlier in GaAs-based systems. Our investigation opens the door to the study of upstream transport in more complex geometries and in edges of non-Abelian phases in graphene.
We report measurements of the interaction-induced quantum Hall effect in a spin-polarized AlAs two-dimensional electron system where the electrons occupy two in-plane conduction band valleys. Via the application of in-plane strain, we tune the energies of these valleys and measure the energy gap of the quantum Hall state at filling factor $ u$ = 1. The gap has a finite value even at zero strain and, with strain, rises much faster than expected from a single-particle picture, suggesting that the lowest energy charged excitations at $ u=1$ are valley Skyrmions.
Graphene on hexagonal boron nitride (hBN) can exhibit a topological phase via mutual crystallographic alignment. Recent measurements of nonlocal resistance ($R_{nl}$) near the secondary Dirac point (SDP) in ballistic graphene/hBN superlattices have been interpreted as arising due to the quantum valley Hall state. We report hBN/graphene/hBN superlattices in which $R_{nl}$ at SDP is negligible, but below 60 K approaches the value of $h/2e^{2}$ in zero magnetic field at the primary Dirac point with a characteristic decay length of 2 ${mu}$m. Furthermore, nonlocal transport transmission probabilities based on the Landauer-Buttiker formalism show evidence for spin-degenerate ballistic valley-helical edge modes, which are key for the development of valleytronics
In a graphene Landau level (LL), strong Coulomb interactions and the fourfold spin/valley degeneracy lead to an approximate SU(4) isospin symmetry. At partial filling, exchange interactions can spontaneously break this symmetry, manifesting as additional integer quantum Hall plateaus outside the normal sequence. Here we report the observation of a large number of these quantum Hall isospin ferromagnetic (QHIFM) states, which we classify according to their real spin structure using temperature-dependent tilted field magnetotransport. The large measured activation gaps confirm the Coulomb origin of the broken symmetry states, but the order is strongly dependent on LL index. In the high energy LLs, the Zeeman effect is the dominant aligning field, leading to real spin ferromagnets with Skyrmionic excitations at half filling, whereas in the `relativistic zero energy LL, lattice scale anisotropies drive the system to a spin unpolarized state, likely a charge- or spin-density wave.
When electrons are confined in two dimensions and subjected to strong magnetic fields, the Coulomb interactions between them become dominant and can lead to novel states of matter such as fractional quantum Hall liquids. In these liquids electrons linked to magnetic flux quanta form complex composite quasipartices, which are manifested in the quantization of the Hall conductivity as rational fractions of the conductance quantum. The recent experimental discovery of an anomalous integer quantum Hall effect in graphene has opened up a new avenue in the study of correlated 2D electronic systems, in which the interacting electron wavefunctions are those of massless chiral fermions. However, due to the prevailing disorder, graphene has thus far exhibited only weak signatures of correlated electron phenomena, despite concerted experimental efforts and intense theoretical interest. Here, we report the observation of the fractional quantum Hall effect in ultraclean suspended graphene, supporting the existence of strongly correlated electron states in the presence of a magnetic field. In addition, at low carrier density graphene becomes an insulator with an energy gap tunable by magnetic field. These newly discovered quantum states offer the opportunity to study a new state of matter of strongly correlated Dirac fermions in the presence of large magnetic fields.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا