Do you want to publish a course? Click here

How it cramps the flow: three regimes for the saturation of parallel ion-beam instabilities

138   0   0.0 ( 0 )
 Added by Martin Weidl
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Motivated by recent advances in laboratory experiments on parallel ion-beam instabilities, we present a theoretical framework for and simulations of their evolution towards shock formation and Fermi acceleration. After reviewing the theory of beam instabilities with a focus on the so-called nonresonant or Bell instability, which we show to be due to the gyromotion of background ions, we contrast the saturation of three parameter regimes: (I) the left-handed nonresonant regime, (II) the right-handed beam-gyroresonant regime, (III) the balanced, mixed-turbulence regime.



rate research

Read More

The electron beam-plasma system is ubiquitous in the space plasma environment. Here, using a Darwin particle-in-cell method, the excitation of electrostatic and whistler instabilities by a gyrating electron beam is studied in support of recent laboratory experiments. It is assumed that the total plasma frequency $omega_{pe}$ is larger than the electron cyclotron frequency $Omega_e$. The fast-growing electrostatic beam-mode waves saturate in a few plasma oscillations by slowing down and relaxing the electron beam parallel to the background magnetic field. Upon their saturation, the finite amplitude electrostatic beam-mode waves can resonate with the tail of the background thermal electrons and accelerate them to the beam parallel velocity. The slower-growing whistler waves are excited in primarily two resonance modes: (a) through Landau resonance due to the inverted slope of the beam electrons in the parallel velocity; (b) through cyclotron resonance by scattering electrons to both lower pitch angles and smaller energies. It is demonstrated that, for a field-aligned beam, the whistler instability can be suppressed by the electrostatic instability due to a faster energy transfer rate between beam electrons and the electrostatic waves. Such a competition of growth between whistler and electrostatic waves depends on the ratio of $omega_{pe}/Omega_e$. In terms of wave propagation, beam-generated electrostatic waves are confined to the beam region whereas beam-generated whistler waves transport energy away from the beam.
We present the first observation of instability in weakly magnetized, pressure dominated plasma Couette flow firmly in the Hall regime. Strong Hall currents couple to a low frequency electromagnetic mode that is driven by high-$beta$ ($>1$) pressure profiles. Spectroscopic measurements show heating (factor of 3) of the cold, unmagnetized ions via a resonant Landau damping process. A linear theory of this instability is derived that predicts positive growth rates at finite $beta$ and shows the stabilizing effect of very large $beta$, in line with observations.
The performance of direct-drive inertial confinement fusion implosions relies critically on the coupling of laser energy to the target plasma. Cross-beam energy transfer (CBET), the resonant exchange of energy between intersecting laser beams mediated by ponderomotively driven ion-acoustic waves (IAW), inhibits this coupling by scattering light into unwanted directions. The variety of beam intersection angles and varying plasma conditions in an implosion results in IAWs with a range of phase velocities. Here we show that CBET saturates through a resonance detuning that depends on the IAW phase velocity and that results from trapping-induced modifications to the ion distribution functions. For smaller phase velocities, the modifications to the distribution functions can rapidly thermalize in the presence of mid-Z ions, leading to a blueshift in the resonant frequency. For larger phase velocities, the modifications can persist, leading to a redshift in the resonant frequency. Ultimately, these results may reveal pathways towards CBET mitigation and inform reduced models for radiation hydrodynamics codes to improve their predictive capability.
In the complex 3D magnetic fields of stellarators, ion-temperature-gradient turbulence is shown to have two distinct saturation regimes, as revealed by petascale numerical simulations, and explained by a simple turbulence theory. The first regime is marked by strong zonal flows, and matches previous observations in tokamaks. The newly observed second regime, in contrast, exhibits small- scale quasi-two-dimensional turbulence, negligible zonal flows, and, surprisingly, a weaker heat flux scaling. Our findings suggest that key details of the magnetic geometry control turbulence in stellarators.
We investigate ion-scale kinetic plasma instabilities at the collisionless shock using linear theory and nonlinear Particle-in-Cell (PIC) simulations. We focus on the Alfven-ion-cyclotron (AIC), mirror, and Weibel instabilities, which are all driven unstable by the effective temperature anisotropy induced by the shock-reflected ions within the transition layer of a strictly perpendicular shock. We conduct linear dispersion analysis with a homogeneous plasma model to mimic the shock transition layer by adopting a ring distribution with finite thermal spread to represent the velocity distribution of the reflected ions. We find that, for wave propagation parallel to the ambient magnetic field, the AIC instability at lower Alfven Mach numbers tends to transition to the Weibel instability at higher Alfven Mach numbers. The instability property is, however, also strongly affected by the sound Mach number. We conclude that the instability at a strong shock with Alfven and sound Mach numbers both in excess of $sim 20{rm -}40$ may be considered as Weibel-like in the sense that the reflected ions behave essentially unmagnetized. Two-dimensional PIC simulations confirm the linear theory and find that, with typical parameters of young supernova remnant shocks, the ring distribution model produces magnetic fluctuations of the order of the background magnetic field, which is smaller than those observed in previous PIC simulations for Weibel-dominated shocks. This indicates that the assumption of the gyrotropic reflected ion distribution may not be adequate to quantitatively predict nonlinear behaviors of the dynamics in high Mach number shocks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا