Do you want to publish a course? Click here

Eigenvalues of the squared antipode in finite dimensional weak Hopf algebras

77   0   0.0 ( 0 )
 Added by Pavel Etingof
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We extend Schaumanns theory of pivotal structures on fusion categories matched to a module category and of module traces developed in arXiv:1206.5716 to the case of non-semisimple tensor categories, and use it to study eigenvalues of the squared antipode $S^2$ in weak Hopf algebras. In particular, we diagonalize $S^2$ for semisimple weak Hopf algebras in characteristic zero, generalizing the result of Nikshych in the pseudounitary case. We show that the answer depends only on the Grothendieck group data of the pivotalizations of the categories involved and the global dimension of the fusion category (thus, all eigenvalues belong to the corresponding number field). On the other hand, we study the eigenvalues of $S^2$ on the non-semisimple weak Hopf algebras attached to dynamical quantum groups at roots of $1$ defined by D. Nikshych and the author in arXiv:math/0003221, and show that they depend nontrivially on the continuous parameters of the corresponding module category. We then compute these eigenvalues as rational functions of these parameters. The paper also contains an appendix by G. Schaumann discussing the connection between our generalization of module traces and the notion of an inner product module category introduced in arXiv:1405.5667.



rate research

Read More

For a finite-dimensional Hopf algebra $A$, the McKay matrix $M_V$ of an $A$-module $V$ encodes the relations for tensoring the simple $A$-modules with $V$. We prove results about the eigenvalues and the right and left (generalized) eigenvectors of $M_V$ by relating them to characters. We show how the projective McKay matrix $Q_V$ obtained by tensoring the projective indecomposable modules of $A$ with $V$ is related to the McKay matrix of the dual module of $V$. We illustrate these results for the Drinfeld double $D_n$ of the Taft algebra by deriving expressions for the eigenvalues and eigenvectors of $M_V$ and $Q_V$ in terms of several kinds of Chebyshev polynomials. For the matrix $N_V$ that encodes the fusion rules for tensoring $V$ with a basis of projective indecomposable $D_n$-modules for the image of the Cartan map, we show that the eigenvalues and eigenvectors also have such Chebyshev expressions.
152 - Sonia Natale 2014
We show that a Jordan-Holder theorem holds for appropriately defined composition series of finite dimensional Hopf algebras. This answers an open question of N. Andruskiewitsch. In the course of our proof we establish analogues of the Noether isomorphism theorems of group theory for arbitrary Hopf algebras under certain faithful (co)flatness assumptions. As an application, we prove an analogue of Zassenhaus butterfly lemma for finite dimensional Hopf algebras. We then use these results to show that a Jordan-Holder theorem holds as well for lower and upper composition series, even though the factors of such series may be not simple as Hopf algebras.
We study actions of pointed Hopf algebras on matrix algebras. Our approach is based on known facts about group gradings of matrix algebras.
The classical Frobenius-Schur indicators for finite groups are character sums defined for any representation and any integer m greater or equal to 2. In the familiar case m=2, the Frobenius-Schur indicator partitions the irreducible representations over the complex numbers into real, complex, and quaternionic representations. In recent years, several generalizations of these invariants have been introduced. Bump and Ginzburg, building on earlier work of Mackey, have defin
In this paper we study the isotypic decomposition of the regular module of a finite-dimensional Hopf algebra over an algebraically closed field of characteristic zero. For a semisimple Hopf algebra, the idempotents realizing the isotypic decomposition can be explicitly expressed in terms of characters and the Haar integral. In this paper we investigate Hopf algebras with the Chevalley property, which are not necessarily semisimple. We find explicit expressions for idempotents in terms of Hopf-algebraic data, where the Haar integral is replaced by the regular character of the dual Hopf algebra. For a large class of Hopf algebras, these are shown to form a complete set of orthogonal idempotents. We give an example which illustrates that the Chevalley property is crucial.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا