No Arabic abstract
In this paper we study the isotypic decomposition of the regular module of a finite-dimensional Hopf algebra over an algebraically closed field of characteristic zero. For a semisimple Hopf algebra, the idempotents realizing the isotypic decomposition can be explicitly expressed in terms of characters and the Haar integral. In this paper we investigate Hopf algebras with the Chevalley property, which are not necessarily semisimple. We find explicit expressions for idempotents in terms of Hopf-algebraic data, where the Haar integral is replaced by the regular character of the dual Hopf algebra. For a large class of Hopf algebras, these are shown to form a complete set of orthogonal idempotents. We give an example which illustrates that the Chevalley property is crucial.
Let g be a finite dimensional complex semisimple Lie algebra, and let V be a finite dimensional represenation of g. We give a closed formula for the mth Frobenius-Schur indicator, m>1, of V in representation-theoretic terms. We deduce that the indicators take integer values, and that for a large enough m, the mth indicator of V equals the dimension of the zero weight space of V. For the classical Lie algebras sl(n), so(2n), so(2n+1) and sp(2n), this is the case for m greater or equal to 2n-1, 4n-5, 4n-3 and 2n+1, respectively.
We show that there is a family of complex semisimple Hopf algebras that do not admit a Hopf order over any number ring. They are Drinfeld twists of certain group algebras. The twist contains a scalar fraction which makes impossible the definability of such Hopf algebras over number rings. We also prove that a complex semisimple Hopf algebra satisfies Kaplanskys sixth conjecture if and only if it admits a weak order, in the sense of Rumynin and Lorenz, over the integers.
The classical Frobenius-Schur indicators for finite groups are character sums defined for any representation and any integer m greater or equal to 2. In the familiar case m=2, the Frobenius-Schur indicator partitions the irreducible representations over the complex numbers into real, complex, and quaternionic representations. In recent years, several generalizations of these invariants have been introduced. Bump and Ginzburg, building on earlier work of Mackey, have defin
Classically, the exponent of a group is the least common multiple of the orders of its elements. This notion was generalized by Etingof and Gelaki to the context of Hopf algebras. Kashina, Sommerhauser and Zhu later observed that there is a strong connection between exponents and Frobenius-Schur indicators. In this paper, we introduce the notion of twisted exponents and show that there is a similar relationship between the twisted exponent and the twisted Frobenius-Schur indicators defined in previous work of the authors. In particular, we exhibit a new formula for the twisted Frobenius-Schur indicators and use it to prove periodicity and rationality statements for the twisted indicators.
We study actions of semisimple Hopf algebras H on Weyl algebras A over a field of characteristic zero. We show that the action of H on A must factor through a group algebra; in other words, if H acts inner faithfully on A, then H is cocommutative. The techniques used include reduction modulo a prime number and the study of semisimple cosemisimple Hopf actions on division algebras.