Do you want to publish a course? Click here

Notes about a combinatorial expression of the fundamental second kind differential on an algebraic curve

102   0   0.0 ( 0 )
 Added by Bertrand Eynard
 Publication date 2018
  fields Physics
and research's language is English
 Authors B. Eynard




Ask ChatGPT about the research

The zero locus of a bivariate polynomial $P(x,y)=0$ defines a compact Riemann surface $Sigma$. The fundamental second kind differential is a symmetric $1otimes 1$ form on $Sigmatimes Sigma$ that has a double pole at coinciding points and no other pole. As its name indicates, this is one of the most important geometric objects on a Riemann surface. Here we give a rational expression in terms of combinatorics of the Newtons polygon of $P$, involving only integer combinations of products of coefficients of $P$. Since the expression uses only combinatorics, the coefficients are in the same field as the coefficients of $P$.



rate research

Read More

141 - Nima Moshayedi 2020
These notes give an introduction to the quantization procedure called geometric quantization. It gives a definition of the mathematical background for its understanding and introductions to classical and quantum mechanics, to differentiable manifolds, symplectic manifolds and the geometry of line bundles and connections. Moreover, these notes are endowed with several exercises and examples.
289 - Olivier Marchal 2014
The purpose of the article is to provide partial proofs for two conjectures given by Witte and Forrester in Moments of the Gaussian $beta$ Ensembles and the large $N$ expansion of the densities with the use of the topological recursion adapted for general $beta$ Gaussian case. In particular, the paper uses a version at coinciding points that provides a simple proof for some of the coefficients involved in the conjecture. Additionally, we propose a generalized version of the conjectures for all correlation functions evaluated at coinciding points.
We consider the resolvent of a second order differential operator with a regular singularity, admitting a family of self-adjoint extensions. We find that the asymptotic expansion for the resolvent in the general case presents unusual powers of $lambda$ which depend on the singularity. The consequences for the pole structure of the $zeta$-function, and the small-$t$ asymptotic expansion of the heat-kernel, are also discussed.
We describe an algebra G of diagrams which faithfully gives a diagrammatic representation of the structures of both the Heisenberg-Weyl algebra H - the associative algebra of the creation and annihilation operators of quantum mechanics - and U(L_H), the enveloping algebra of the Heisenberg Lie algebra L_H. We show explicitly how G may be endowed with the structure of a Hopf algebra, which is also mirrored in the structure of U(L_H). While both H and U(L_H) are images of G, the algebra G has a richer structure and therefore embodies a finer combinatorial realization of the creation-annihilation system, of which it provides a concrete model.
The solutions to the Kadomtsev-Petviashvili equation that arise from a fixed complex algebraic curve are parametrized by a threefold in a weighted projective space, which we name after Boris Dubrovin. Current methods from nonlinear algebra are applied to study parametrizations and defining ideals of Dubrovin threefolds. We highlight the dichotomy between transcendental representations and exact algebraic computations. Our main result on the algebraic side is a toric degeneration of the Dubrovin threefold into the product of the underlying canonical curve and a weighted projective plane.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا