Do you want to publish a course? Click here

Excessive shift of the CMB acoustic peaks of the Cold Spot area

253   0   0.0 ( 0 )
 Added by Lung-Yih Chiang
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Measurement of the acoustic peaks of the cosmic microwave background (CMB) temperature anisotropies has been instrumental in deciding the geometry and content of the universe. Acoustic peak positions vary in different parts of the sky due to statistical fluctuation. We present the statistics of the peak positions of small patches from ESA Planck data. We found that the peak positions have significantly high variance compared to the 100 CMB simulations with best-fit LambdaCDM model with lensing and Doppler boosting effects included. Examining individual patches, we found the one containing the mysterious Cold Spot, an area near the Eridanus constellation where the temperature is significantly lower than Gaussian theory predicts, displays large synchronous shift of peak positions towards smaller multipole numbers with significance lower than 1.11x 10^{-4}. The combination of large synchronous shifts in acoustic peaks and lower than usual temperature at the Cold Spot area results in a 4.73-sigma detection (significance p~ 1.11x 10^{-6}) against the LambdaCDM model. And it was already reported in Finelli et al. (2016) that in the WISE-2MASS galaxy catalog at z<0.3 the Cold Spot region is surrounded by surprisingly large underdense regions around 15 degs in radius, which are found to be in the same square patch. Thus we propose there is some extra localized unknown energy to stretch out the space in the transverse direction around the Cold Spot area to simultaneously account for the Cold Spot, excessive shift of the acoustic peaks, and the large underdense regions.



rate research

Read More

127 - Ruari Mackenzie 2017
We report the results of the 2dF-VST ATLAS Cold Spot galaxy redshift survey (2CSz) based on imaging from VST ATLAS and spectroscopy from 2dF AAOmega over the core of the CMB Cold Spot. We sparsely surveyed the inner 5$^{circ}$ radius of the Cold Spot to a limit of $i_{AB} le 19.2$, sampling $sim7000$ galaxies at $z<0.4$. We have found voids at $z=$ 0.14, 0.26 and 0.30 but they are interspersed with small over-densities and the scale of these voids is insufficient to explain the Cold Spot through the $Lambda$CDM ISW effect. Combining with previous data out to $zsim1$, we conclude that the CMB Cold Spot could not have been imprinted by a void confined to the inner core of the Cold Spot. Additionally we find that our control field GAMA G23 shows a similarity in its galaxy redshift distribution to the Cold Spot. Since the GAMA G23 line-of-sight shows no evidence of a CMB temperature decrement we conclude that the Cold Spot may have a primordial origin rather than being due to line-of-sight effects.
Cosmic microwave background (CMB) temperature anisotropies encode the history of the universe, which manifest itself in the angular power spectrum. We test the angular power spectra of small patches from the ESA $textit{Planck}$ data. Known variations in the power spectra from small patches reveal informative details such as the gravitational lensing and the Doppler boosting effect. We compute the relative shifts of power spectra via comparing patches selected randomly from the CMB. We visualize the relative shifts on a full-sky HEALPix grid (a feature map) and analyze the statistical properties on the full-sky map. We find the regions contain the Cold Spot and the Draco supervoid have large relative shifts to large scales. We also find a dipole on the generated feature map comparing with simulations. We discuss possible ways to resolve this dipole on the feature map, including foregrounds, solar dipole systematics, and the uncertainty in our method.
Cosmologists have suggested a number of intriguing hypotheses for the origin of the WMAP cold spot, the coldest extended region seen in the CMB sky, including a very large void and a collapsing texture. Either hypothesis predicts a distinctive CMB lensing signal. We show that the upcoming generation of high resolution CMB experiments such as ACT and SPT should be able to detect the signatures of either textures or large voids. If either signal is detected, it would have profound implications for cosmology.
244 - P. Vielva 2010
The report of a significant deviation of the CMB temperature anisotropies distribution from Gaussianity (soon after the public release of the WMAP data in 2003) has become one of the most solid WMAP anomalies. This detection grounds on an excess of the kurtosis of the Spherical Mexican Hat Wavelet coefficients at scales of around 10 degrees. At these scales, a prominent feature --located in the southern Galactic hemisphere-- was highlighted from the rest of the SMHW coefficients: the Cold Spot. This article presents a comprehensive overview related to the study of the Cold Spot, paying attention to the non-Gaussianity detection methods, the morphological characteristics of the Cold Spot, and the possible sources studied in the literature to explain its nature. Special emphasis is made on the Cold Spot compatibility with a cosmic texture, commenting on future tests that would help to give support or discard this hypothesis.
352 - J. Kang , P. A. R. Ade , Z. Ahmed 2020
BICEP3 is a 520 mm aperture on-axis refracting telescope at the South Pole, which observes the polarization of the cosmic microwave background (CMB) at 95 GHz to search for the B-mode signal from inflationary gravitational waves. In addition to this main target, we have developed a low-elevation observation strategy to extend coverage of the Southern sky at the South Pole, where BICEP3 can quickly achieve degree-scale E-mode measurements over a large area. An interesting E-mode measurement is probing a potential polarization anomaly around the CMB Cold Spot. During the austral summer seasons of 2018-19 and 2019-20, BICEP3 observed the sky with a flat mirror to redirect the beams to various low elevation ranges. The preliminary data analysis shows degree-scale E-modes measured with high signal-to-noise ratio.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا