Do you want to publish a course? Click here

An ultra-high vacuum scanning tunneling microscope operating at sub-Kelvin temperatures and high magnetic fields for spin-resolved measurements

240   0   0.0 ( 0 )
 Added by Christian Hess
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the construction and performance of an ultra-low temperature scanning tunneling microscope (STM), working in ultra-high vacuum conditions (UHV) and in high magnetic fields up to 9 T. The cryogenic environment of the STM is generated by a single shot $^3$He magnet cryostat in combination with a $^4$He dewar system. At base temperature (300~mK), the cryostat has an operation time of approximately 80 hours. The special design of the microscope allows the transfer of the STM head from the cryostat to a UHV-chamber system, where samples and STM-tips can be easily exchanged. The UHV chambers are equipped with specific surface science treatment tools for the functionalization of samples and tips, including high-temperature treatments and thin film deposition. This, particularly, enables spin-resolved tunneling measurements. We present test measurements using well known samples and tips based on superconductor and metallic materials such as LiFeAs, Nb, Fe and W, respectively. The measurements demonstrate the outstanding performance of the STM with high spatial and energy resolution as well as the spin-resolved capability.



rate research

Read More

We describe the design, construction, and performance of an ultra-high vacuum (UHV) scanning tunneling microscope (STM) capable of imaging at dilution-refrigerator temperatures and equipped with a vector magnet. The primary objective of our design is to achieve a high level of modularity by partitioning the STM system into a set of easily separable, interchangeable components. This naturally segregates the UHV needs of STM instrumentation from the typically non-UHV construction of a dilution refrigerator, facilitating the usage of non-UHV materials while maintaining a fully bakeable UHV chamber that houses the STM. The modular design also permits speedy removal of the microscope head from the rest of the system, allowing for repairs, modifications, and even replacement of the entire microscope head to be made at any time without warming the cryostat or compromising the vacuum. Without using cryogenic filters, we measured an electron temperature of 184 mK on a superconducting Al(100) single crystal.
We describe the design and performance of a scanning tunneling microscope (STM) which operates at a base temperature of 30 mK in a vector magnetic field. The cryogenics is based on an ultra-high vacuum (UHV) top-loading wet dilution refrigerator that contains a vector magnet allowing for fields up to 9 T perpendicular and 4 T parallel to the sample. The STM is placed in a multi-chamber UHV system, which allows in-situ preparation and exchange of samples and tips. The entire system rests on a 150-ton concrete block suspended by pneumatic isolators, which is housed in an acoustically isolated and electromagnetically shielded laboratory optimized for extremely low noise scanning probe measurements. We demonstrate the overall performance by illustrating atomic resolution and quasiparticle interference imaging and detail the vibrational noise of both the laboratory and microscope. We also determine the electron temperature via measurement of the superconducting gap of Re(0001) and illustrate magnetic field-dependent measurements of the spin excitations of individual Fe atoms on Pt(111). Finally, we demonstrate spin resolution by imaging the magnetic structure of the Fe double layer on W(110).
We present the design of a highly compact High Field Scanning Probe Microscope (HF-SPM) for operation at cryogenic temperatures in an extremely high magnetic field, provided by a water-cooled Bitter magnet able to reach 38 T. The HF-SPM is 14 mm in diameter: an Attocube nano-positioner controls the coarse approach of a piezo resistive AFM cantilever to a scanned sample. The Bitter magnet constitutes an extreme environment for SPM due to the high level of vibrational noise; the Bitter magnet noise at frequencies up to 300 kHz is characterized and noise mitigation methods are described. The performance of the HF-SPM is demonstrated by topographic imaging and noise measurements at up to 30 T. Additionally, the use of the SPM as a three-dimensional dilatometer for magnetostriction measurements is demonstrated via measurements on a magnetically frustrated spinel sample.
142 - T. Machida , Y. Kohsaka , 2018
We describe the development and performance of an ultra-high vacuum scanning tunneling microscope working under combined extreme conditions of ultra-low temperatures and high magnetic fields. We combined a top-loading dilution refrigerator and a standard bucket dewar with a bottom-loading superconducting magnet to achieve 4.5 days operating time, which is long enough to perform various spectroscopic-imaging measurements. To bring the effective electron temperature closer to the mixing-chamber temperature, we paid particular attention to filtering out the radio-frequency noise, as well as enhancing the thermal link between the microscope unit and the mixing chamber. We estimated the lowest effective electron temperature to be below 90 mK by measuring the superconducting-gap spectrum of aluminum. We confirmed the long-term stability of the spectroscopic-imaging measurement by visualizing superconducting vortices in the cuprate superconductor Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+delta}$.
Coupling phase-stable single-cycle terahertz (THz) pulses to scanning tunneling microscope (STM) junctions enables spatio-temporal imaging with femtosecond temporal and r{A}ngstrom spatial resolution. The time resolution achieved in such THz-gated STM is ultimately limited by the sub-cycle temporal variation of the tip-enhanced THz field acting as an ultrafast voltage pulse, and hence by the ability to feed high-frequency, broadband THz pulses into the junction. Here, we report on the coupling of ultrabroadband (1-30 THz) single-cycle THz pulses from a spintronic THz emitter(STE) into a metallic STM junction. We demonstrate broadband phase-resolved detection of the THz voltage transient directly in the STM junction via THz-field-induced modulation of ultrafast photocurrents. Comparison to the unperturbed far-field THz waveform reveals the antenna response of the STM tip. Despite tip-induced low-pass filtering, frequencies up to 15 THz can be detected in the tip-enhanced near-field, resulting in THz transients with a half-cycle period of 115 fs. We further demonstrate simple polarity control of the THz bias via the STE magnetization, and show that up to 2 V THz bias at 1 MHz repetition rate can be achieved in the current setup. Finally, we find a nearly constant THz voltage and waveform over a wide range of tip-sample distances, which by comparison to numerical simulations confirms the quasi-static nature of the THz pulses. Our results demonstrate the suitability of spintronic THz emitters for ultrafast THz-STM with unprecedented bandwidth of the THz bias, and provide insight into the femtosecond response of defined nanoscale junctions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا