No Arabic abstract
An interpretation of the charge dependent correlations sensitive to the Chiral Magnetic Effect (CME) -- the separation of the electric charges along the system magnetic field (across the reaction plane) -- is ambiguous due to a possible large background (non-CME) effects. The background contribution is proportional to the elliptic flow $v_2$; it is the largest in measurements relative to the participant plane, and is smaller in measurements relative to the flow plane determined by spectators, where the CME signal, on opposite, is likely larger. In this note I discuss a possible strategy for corresponding experimental measurements, and list and evaluate different assumptions related to this approach.
Correlation measurements with respect to the spectator and participant planes in relativistic heavy ion collisions were proposed to extract the chiral magnetic effect (CME) from background dominated azimuthal correlators. This paper investigates the effects of two- and three-particle nonflow correlations on the extracted CME signal fraction, $f_{text{CME}}$. It is found, guided by a multiphase transport (AMPT) model and the heavy ion jet interaction generator (HIJING) together with experimental data, that the nonflow effects amount to approximately $(4pm5)$% and $(-5pm3)$% without and with pseudorapidity gaps, respectively, in 20-50% centrality Au+Au collisions at $sqrt{s_{text{NN}}}= 200 text{ GeV}$.
Invariant cross sections of intermediate mass fragments in peripheral collisions of Au on Au at incident energies between 40 and 150 AMeV have been measured with the 4-pi multi-detector INDRA. The maximum of the fragment production is located near mid-rapidity at the lower energies and moves gradually towards the projectile and target rapidities as the energy is increased. Schematic calculations within an extended Goldhaber model suggest that the observed cross-section distributions and their evolution with energy are predominantly the result of the clustering requirement for the emerging fragments and of their Coulomb repulsion from the projectile and target residues. The quantitative comparison with transverse energy spectra and fragment charge distributions emphasizes the role of hard scattered nucleons in the fragmentation process.
The chiral magnetic effect (CME) refers to charge separation along a strong magnetic field due to imbalanced chirality of quarks in local parity and charge-parity violating domains in quantum chromodynamics. The experimental measurement of the charge separation is made difficult by the presence of a major background from elliptic azimuthal anisotropy. This background and the CME signal have different sensitivities to the spectator and participant planes, and could thus be determined by measurements with respect to these planes. We report such measurements in Au+Au collisions at a nucleon-nucleon center-of-mass energy of 200 GeV at the Relativistic Heavy-Ion Collider. It is found that the charge separation, with the flow background removed, is consistent with zero in peripheral (large impact parameter) collisions. Some indication of finite CME signals is seen with a significance of 1--3 standard deviations in mid-central (intermediate impact parameter) collisions. Significant residual background effects may, however, still be present.
We present an analysis of the anisotropic flow harmonics in Pb+Pb collisions at beam momenta of 30$A$ GeV/$c$ collected by the NA61/SHINE experiment in the year 2016. Directed and elliptic flow coefficients are measured relative to the spectator plane estimated with the Projectile Spectators Detector (PSD). The flow coefficients are reported as a function of transverse momentum in different classes of collision centrality. The results are compared with a new analysis of the NA49 data for Pb+Pb collisions at 40$A$ GeV using forward calorimeters (VCal and RCal) for event plane estimation.
We present measurements of $pi^-$ and $pi^+$ elliptic flow, $v_2$, at midrapidity in Au+Au collisions at $sqrt{s_{_{rm NN}}} =$ 200, 62.4, 39, 27, 19.6, 11.5 and 7.7 GeV, as a function of event-by-event charge asymmetry, $A_{ch}$, based on data from the STAR experiment at RHIC. We find that $pi^-$ ($pi^+$) elliptic flow linearly increases (decreases) with charge asymmetry for most centrality bins at $sqrt{s_{_{rm NN}}} = text{27 GeV}$ and higher. At $sqrt{s_{_{rm NN}}} = text{200 GeV}$, the slope of the difference of $v_2$ between $pi^-$ and $pi^+$ as a function of $A_{ch}$ exhibits a centrality dependence, which is qualitatively similar to calculations that incorporate a chiral magnetic wave effect. Similar centrality dependence is also observed at lower energies.