Do you want to publish a course? Click here

Quantum state transfer of angular momentum via single electron photo-excitation from a Zeeman-resolved light hole

108   0   0.0 ( 0 )
 Added by Kazuyuki Kuroyama
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Electron spins in GaAs quantum dots have been used to make qubits with high-fidelity gating and long coherence time, necessary ingredients in solid-state quantum computing. The quantum dots can also host photon qubits with energy applicable for optical communication, and can show a promising photon-to-spin conversion. The coherent interface is established through photo-excitation of a single pair of an electron and a Zeeman-resolved light-hole, not heavy-hole. However, no experiments on the single photon to spin conversion have been performed yet. Here we report on single shot readout of a single electron spin generated in a GaAs quantum dot by spin-selective excitation with linearly polarized light. A photo-electron spin generated from a Zeeman-resolved light-hole exciton is detected using an optical spin blockade method in a single quantum dot and a Pauli spin blockade method in a double quantum dot. We found that the blockade probability strongly depends on the photon polarization and the hole state, heavy- or light-hole, indicating a transfer of the angular momentum from single photons to single electron spins. Our demonstration will open a pathway to further investigation on fundamental quantum physics such as quantum entanglement between a wide variety of quantum systems and applications of quantum networking technology.

rate research

Read More

We demonstrate the real-time detection of single photogenerated electrons in two different lateral double quantum dots made in AlGaAs/GaAs/AlGaAs quantum wells having a thin or a thick AlGaAs barrier layer. The observed incident laser power and photon energy dependences of the photoelectron detection efficiency both indicate that the trapped photoelectrons are, for the thin barrier sample, predominantly photogenerated in the buffer layer followed by tunneling into one of the two dots, whereas for the thick barrier sample they are directly photogenerated in the well. For the latter, single photoelectron detection after selective excitation of the heavy and light hole state in the dot is well resolved. This ensures the applicability of our quantum well-based quantum dot systems for the coherent transfer from single photon polarization to single electron spin states.
Two dimensional electrons in a magnetic field can form new states of matter characterized by topological properties and strong electronic correlations as displayed in the integer and fractional quantum Hall states. In these states the electron liquid displays several spectacular characteristics which manifest themselves in transport experiments with the quantization of the Hall resistance and a vanishing longitudinal conductivity or in thermodynamic equilibrium when the electron fluid becomes incompressible. Several experiments have reported that dissipation-less transport can be achieved even at weak, non-quantizing magnetic fields when the electrons absorb photons at specific energies related to their cyclotron frequency. Compressibility measurements on electrons on liquid helium demonstrate the formation of an incompressible electronic state under these resonant excitation conditions.
The formation of bound electron-hole pairs, also called charge-transfer (CT) states, in organic-based photovoltaic devices is one of the dominant loss mechanisms hindering performance. While CT state dynamics following electron transfer from donor to acceptor have been widely studied, there is not much known about the dynamics of bound CT states produced by hole transfer from the acceptor to the donor. In this letter, we compare the dynamics of CT states formed in the different charge-transfer pathways in a range of model systems. We show that the nature and dynamics of the generated CT states are similar in the case of electron and hole transfer. However the yield of bound and free charges is observed to be strongly dependent on the HOMOD-HOMOA and LUMOD-LUMOA energy differences of the material system. We propose a qualitative model in which the effects of static disorder and sampling of states during the relaxation determine the probability of accessing CT states favourable for charge separation.
We propose a highly efficient atomically-resolved mode of electron magnetic chiral dichroism. This method exploits the recently introduced orbital angular momentum spectrometer to analyze the inelastically scattered electrons allowing for simultaneous dispersion in both energy and angular momentum. The technique offers several advantages over previous formulations of electron magnetic chiral dichroism as it requires much simpler experimental conditions in terms of specimen orientation and thickness. A novel simulation algorithm, based on the multislice description of the beam propagation, is used to anticipate the advantages of the new approach over current electron magnetic chiral dichroism implementations. Numerical calculations confirm an increased magnetic signal to noise ratio with in plane atomic resolution.
56 - M. Huber , M. Grayson , M. Rother 2004
Momentum resolved magneto-tunnelling spectroscopy is performed at a single sharp quantum Hall edge. We directly probe the structure of individual integer quantum Hall (QH) edge modes, and find that an epitaxially overgrown cleaved edge realizes the sharp edge limit, where the Chklovskii picture relevant for soft etched or gated edges is no longer valid. The Fermi wavevector in the probe quantum well probes the real-space position of the QH edge modes, and reveals inter-channel distances smaller than both the magnetic length and the Bohr radius. We quantitatively describe the lineshape of principal conductance peaks and deduce an edge filling factor from their position consistent with the bulk value. We observe features in the dispersion which are attributed to fluctuations in the ground energy of the quantum Hall system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا