No Arabic abstract
By adopting Multifractal detrended fluctuation (MF-DFA) analysis methods, the multifractal nature is revealed in the high-frequency data of two typical indexes, the Shanghai Stock Exchange Composite 180 Index (SH180) and the Shenzhen Stock Exchange Composite Index (SZCI). The characteristics of the corresponding multifractal spectra are defined as a measurement of market volatility. It is found that there is a statistically significant relationship between the stock index returns and the spectral characteristics, which can be applied to forecast the future market return. The in-sample and out-of-sample tests on the return predictability of multifractal characteristics indicate the spectral width $Delta {alpha}$ is a significant and positive excess return predictor. Our results shed new lights on the application of multifractal nature in asset pricing.
The distribution of the return intervals $tau$ between volatilities above a threshold $q$ for financial records has been approximated by a scaling behavior. To explore how accurate is the scaling and therefore understand the underlined non-linear mechanism, we investigate intraday datasets of 500 stocks which consist of the Standard & Poors 500 index. We show that the cumulative distribution of return intervals has systematic deviations from scaling. We support this finding by studying the m-th moment $mu_m equiv <(tau/<tau>)^m>^{1/m}$, which show a certain trend with the mean interval $<tau>$. We generate surrogate records using the Schreiber method, and find that their cumulative distributions almost collapse to a single curve and moments are almost constant for most range of $<tau>$. Those substantial differences suggest that non-linear correlations in the original volatility sequence account for the deviations from a single scaling law. We also find that the original and surrogate records exhibit slight tendencies for short and long $<tau>$, due to the discreteness and finite size effects of the records respectively. To avoid as possible those effects for testing the multiscaling behavior, we investigate the moments in the range $10<<tau>leq100$, and find the exponent $alpha$ from the power law fitting $mu_msim<tau>^alpha$ has a narrow distribution around $alpha eq0$ which depend on m for the 500 stocks. The distribution of $alpha$ for the surrogate records are very narrow and centered around $alpha=0$. This suggests that the return interval distribution exhibit multiscaling behavior due to the non-linear correlations in the original volatility.
We investigate the probability distribution of the volatility return intervals $tau$ for the Chinese stock market. We rescale both the probability distribution $P_{q}(tau)$ and the volatility return intervals $tau$ as $P_{q}(tau)=1/bar{tau} f(tau/bar{tau})$ to obtain a uniform scaling curve for different threshold value $q$. The scaling curve can be well fitted by the stretched exponential function $f(x) sim e^{-alpha x^{gamma}}$, which suggests memory exists in $tau$. To demonstrate the memory effect, we investigate the conditional probability distribution $P_{q} (tau|tau_{0})$, the mean conditional interval $<tau|tau_{0}>$ and the cumulative probability distribution of the cluster size of $tau$. The results show clear clustering effect. We further investigate the persistence probability distribution $P_{pm}(t)$ and find that $P_{-}(t)$ decays by a power law with the exponent far different from the value 0.5 for the random walk, which further confirms long memory exists in $tau$. The scaling and long memory effect of $tau$ for the Chinese stock market are similar to those obtained from the United States and the Japanese financial markets.
In this paper, we investigate the cooling-off effect (opposite to the magnet effect) from two aspects. Firstly, from the viewpoint of dynamics, we study the existence of the cooling-off effect by following the dynamical evolution of some financial variables over a period of time before the stock price hits its limit. Secondly, from the probability perspective, we investigate, with the logit model, the existence of the cooling-off effect through analyzing the high-frequency data of all A-share common stocks traded on the Shanghai Stock Exchange and the Shenzhen Stock Exchange from 2000 to 2011 and inspecting the trading period from the opening phase prior to the moment that the stock price hits its limits. A comparison is made of the properties between up-limit hits and down-limit hits, and the possible difference will also be compared between bullish and bearish market state by dividing the whole period into three alternating bullish periods and three bearish periods. We find that the cooling-off effect emerges for both up-limit hits and down-limit hits, and the cooling-off effect of the down-limit hits is stronger than that of the up-limit hits. The difference of the cooling-off effect between bullish period and bearish period is quite modest. Moreover, we examine the sub-optimal orders effect, and infer that the professional individual investors and institutional investors play a positive role in the cooling-off effects. All these findings indicate that the price limit trading rule exerts a positive effect on maintaining the stability of the Chinese stock markets.
Bid-ask spread is taken as an important measure of the financial market liquidity. In this article, we study the dynamics of the spread return and the spread volatility of four liquid stocks in the Chinese stock market, including the memory effect and the multifractal nature. By investigating the autocorrelation function and the Detrended Fluctuation Analysis (DFA), we find that the spread return is lack of long-range memory, while the spread volatility is long-range time correlated. Moreover, by applying the Multifractal Detrended Fluctuation Analysis (MF-DFA), the spread return is observed to possess a strong multifractality, which is similar to the dynamics of a variety of financial quantities. Differently from the spread return, the spread volatility exhibits a weak multifractal nature.
Price limit trading rules are adopted in some stock markets (especially emerging markets) trying to cool off traders short-term trading mania on individual stocks and increase market efficiency. Under such a microstructure, stocks may hit their up-limits and down-limits from time to time. However, the behaviors of price limit hits are not well studied partially due to the fact that main stock markets such as the US markets and most European markets do not set price limits. Here, we perform detailed analyses of the high-frequency data of all A-share common stocks traded on the Shanghai Stock Exchange and the Shenzhen Stock Exchange from 2000 to 2011 to investigate the statistical properties of price limit hits and the dynamical evolution of several important financial variables before stock price hits its limits. We compare the properties of up-limit hits and down-limit hits. We also divide the whole period into three bullish periods and three bearish periods to unveil possible differences during bullish and bearish market states. To uncover the impacts of stock capitalization on price limit hits, we partition all stocks into six portfolios according to their capitalizations on different trading days. We find that the price limit trading rule has a cooling-off effect (object to the magnet effect), indicating that the rule takes effect in the Chinese stock markets. We find that price continuation is much more likely to occur than price reversal on the next trading day after a limit-hitting day, especially for down-limit hits, which has potential practical values for market practitioners.