Do you want to publish a course? Click here

Multiple-resolution scheme in finite-volume code for active or passive scalar turbulence

180   0   0.0 ( 0 )
 Added by Kai Leong Chong
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

In scalar turbulence it is sometimes the case that the scalar diffusivity is smaller than the viscous diffusivity. The thermally-driven turbulent convection in water is a typical example. In such a case the smallest scale in the problem is the Batchelor scale $l_b$, rather than the Kolmogorov scale $l_k$, as $l_b = l_k/Sc^{1/2}$, where Sc is the Schmidt number (or Prandtl number in the case of temperature). In the numerical studies of such scalar turbulence, the conventional approach is to use a single grid for both the velocity and scalar fields. Such single-resolution scheme often over-resolves the velocity field because the resolution requirement for scalar is higher than that for the velocity field, since $l_b<l_k$ for $Sc>1$. In this paper we put forward an algorithm that implements the so-called multiple-resolution method with a finite-volume code. In this scheme, the velocity and pressure fields are solved in a coarse grid, while the scalar field is solved in a dense grid. The central idea is to implement the interpolation scheme on the framework of finite-volume to reconstruct the divergence-free velocity from the coarse to the dense grid. We demonstrate our method using a canonical model system of fluid turbulence, the Rayleigh-Benard convection. We show that, with the tailored mesh design, considerable speed-up for simulating scalar turbulence can be achieved, especially for large Schmidt (Prandtl) numbers. In the same time, sufficient accuracy of the scalar and velocity fields can be achived by this multiple-resolution scheme. Although our algorithm is demonstrated with a case of an active scalar, it can be readily applied to passive scalar turbulent flows.



rate research

Read More

The advection and mixing of a scalar quantity by fluid flow is an important problem in engineering and natural sciences. If the fluid is turbulent, the statistics of the passive scalar exhibit complex behavior. This paper is concerned with two Lagrangian scalar turbulence models based on the recent fluid deformation model that can be shown to reproduce the statistics of passive scalar turbulence for a range of Reynolds numbers. For these models, we demonstrate how events of extreme passive scalar gradients can be recovered by computing the instanton, i.e., the saddle-point configuration of the associated stochastic field theory. It allows us to both reproduce the heavy-tailed statistics associated with passive scalar turbulence, and recover the most likely mechanism leading to such extreme events. We further demonstrate that events of large negative strain in these models undergo spontaneous symmetry breaking.
The reduction of dimensionality of physical systems, specially in fluid dynamics, leads in many situations to nonlinear ordinary differential equations which have global invariant manifolds with algebraic expressions containing relevant physical information of the original system. We present a method to identify such manifolds, and we apply it to a reduced model for the Lagrangian evolution of field gradients in homogeneous and isotropic turbulence with a passive scalar.
We propose the rhoLENT method, an extension of the unstructured Level Set / Front Tracking (LENT) method, based on the collocated Finite Volume equation discretization, that recovers exact numerical stability for the two-phase momentum convection with a range of density ratios, namely $rho^-/rho^+in [1, 10000]$. We provide the theoretical basis for the numerical inconsistency in the collocated finite volume equation discretization of the single-field two-phase momentum convection. The cause of the numerical inconsistency lies in the way the cell-centered density is computed in the new time step ($rho_c^{n+1}$). Specifically, if $rho_c^{n+1}$ is computed from the approximation of the fluid interface at $t^{n+1}$, and it is not computed by solving a mass conservation equation (or its equivalent), the two-phase momentum convection term will automatically be inconsistently discretized. We provide the theoretical justification behind using the auxiliary mass conservation equation to stabilize flows with strong density ratios. The evaluation of the face-centered (mass flux) density we base on the fundamental principle of mass conservation, used to model the single-field density, contrary to the use of different weighted averages of cell-centered single-field densities and alternative reconstructions of the mass flux density by other contemporary methods. Implicit discretization of the two-phase momentum convection term is achieved, removing the CFL stability criterion. Numerical stability is demonstrated in terms of the relative $L_infty$ velocity error norm with realistic viscosity and strong surface tension forces. The stabilization technique in the rhoLENT method is also applicable to other two-phase flow simulation methods that utilize the collocated unstructured Finite Volume Method to discretize single-field two-phase Navier-Stokes Equations.
The performance of interFoam (a widely used solver within OpenFOAM package) in simulating the propagation of water waves has been reported to be sensitive to the temporal and spatial resolution. To facilitate more accurate simulations, a numerical wave tank is built based on a high-order accurate Navier-Stokes model, which employs the VPM (volume-average/point-value multi-moment) scheme as the fluid solver and the THINC/QQ method (THINC method with quadratic surface representation and Gaussian quadrature) for the free-surface capturing. Simulations of regular waves in an intermediate water depth are conducted and the results are assessed via comparing with the analytical solutions. The performance of the present model and interFoam solver in simulating the wave propagation is systematically compared in this work. The results clearly demonstrate that compared with interFoam solver, the present model significantly improves the dissipation properties of the propagating wave, where the waveforms as well as the velocity distribution can be substantially maintained while the waves propagating over long distances even with large time steps and coarse grids. It is also shown that the present model requires much less computation time to reach a given error level in comparison with interFoam solver.
We use direct numerical simulations to compute turbulent transport coefficients for passive scalars in turbulent rotating flows. Effective diffusion coefficients in the directions parallel and perpendicular to the rotations axis are obtained by studying the diffusion of an imposed initial profile for the passive scalar, and calculated by measuring the scalar average concentration and average spatial flux as a function of time. The Rossby and Schmidt numbers are varied to quantify their effect on the effective diffusion. It is find that rotation reduces scalar diffusivity in the perpendicular direction. The perpendicular diffusion can be estimated from mixing length arguments using the characteristic velocities and lengths perpendicular to the rotation axis. Deviations are observed for small Schmidt numbers, for which turbulent transport decreases and molecular diffusion becomes more significant.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا