No Arabic abstract
The reduction of dimensionality of physical systems, specially in fluid dynamics, leads in many situations to nonlinear ordinary differential equations which have global invariant manifolds with algebraic expressions containing relevant physical information of the original system. We present a method to identify such manifolds, and we apply it to a reduced model for the Lagrangian evolution of field gradients in homogeneous and isotropic turbulence with a passive scalar.
We present a reduced system of 7 ordinary differential equations that captures the time evolution of spatial gradients of the velocity and the temperature in fluid elements of stratified turbulent flows. We show the existence of invariant manifolds (further reducing the system dimensionality), and compare the results with data stemming from direct numerical simulations of the full incompressible Boussinesq equations in the stably stratified case. Numerical results accumulate over the invariant anifolds of the reduced system, indicating the system lives at the brink of an instability. Finally, we study the stability of the reduced system, and show that it is compatible with recent observations in stratified turbulence of non-monotonic dependence of intermittency with stratification.
The advection and mixing of a scalar quantity by fluid flow is an important problem in engineering and natural sciences. If the fluid is turbulent, the statistics of the passive scalar exhibit complex behavior. This paper is concerned with two Lagrangian scalar turbulence models based on the recent fluid deformation model that can be shown to reproduce the statistics of passive scalar turbulence for a range of Reynolds numbers. For these models, we demonstrate how events of extreme passive scalar gradients can be recovered by computing the instanton, i.e., the saddle-point configuration of the associated stochastic field theory. It allows us to both reproduce the heavy-tailed statistics associated with passive scalar turbulence, and recover the most likely mechanism leading to such extreme events. We further demonstrate that events of large negative strain in these models undergo spontaneous symmetry breaking.
In scalar turbulence it is sometimes the case that the scalar diffusivity is smaller than the viscous diffusivity. The thermally-driven turbulent convection in water is a typical example. In such a case the smallest scale in the problem is the Batchelor scale $l_b$, rather than the Kolmogorov scale $l_k$, as $l_b = l_k/Sc^{1/2}$, where Sc is the Schmidt number (or Prandtl number in the case of temperature). In the numerical studies of such scalar turbulence, the conventional approach is to use a single grid for both the velocity and scalar fields. Such single-resolution scheme often over-resolves the velocity field because the resolution requirement for scalar is higher than that for the velocity field, since $l_b<l_k$ for $Sc>1$. In this paper we put forward an algorithm that implements the so-called multiple-resolution method with a finite-volume code. In this scheme, the velocity and pressure fields are solved in a coarse grid, while the scalar field is solved in a dense grid. The central idea is to implement the interpolation scheme on the framework of finite-volume to reconstruct the divergence-free velocity from the coarse to the dense grid. We demonstrate our method using a canonical model system of fluid turbulence, the Rayleigh-Benard convection. We show that, with the tailored mesh design, considerable speed-up for simulating scalar turbulence can be achieved, especially for large Schmidt (Prandtl) numbers. In the same time, sufficient accuracy of the scalar and velocity fields can be achived by this multiple-resolution scheme. Although our algorithm is demonstrated with a case of an active scalar, it can be readily applied to passive scalar turbulent flows.
Energy flux plays a key role in the analyses of energy-cascading turbulence. In isotropic turbulence, the flux is given by a scalar as a function of the magnitude of the wavenumber. On the other hand, the flux in anisotropic turbulence should be a geometric vector that has a direction as well as the magnitude, and depends not only on the magnitude of the wavenumber but also on its direction. The energy-flux vector in the anisotropic turbulence cannot be uniquely determined in a way used for the isotropic flux. In this work, introducing two ansatzes, net locality and efficiency of the nonlinear energy transfer, we propose a way to determine the energy-flux vector in anisotropic turbulence by using the Moore--Penrose inverse. The energy-flux vector in strongly rotating turbulence is demonstrated based on the energy transfer rate obtained by direct numerical simulations. It is found that the direction of the energy-flux vector is consistent with the prediction of the weak turbulence theory in the wavenumber range dominated by the inertial waves. However, the energy flux along the critical wavenumbers predicted by the critical balance in the buffer range between in the weak turbulence range and the isotropic Kolmogorov turbulence range is not observed in the present simulations. This discrepancy between the critical balance and the present numerical results is discussed and the dissipation is found to play an important role in the energy flux in the buffer range.
We use direct numerical simulations to compute turbulent transport coefficients for passive scalars in turbulent rotating flows. Effective diffusion coefficients in the directions parallel and perpendicular to the rotations axis are obtained by studying the diffusion of an imposed initial profile for the passive scalar, and calculated by measuring the scalar average concentration and average spatial flux as a function of time. The Rossby and Schmidt numbers are varied to quantify their effect on the effective diffusion. It is find that rotation reduces scalar diffusivity in the perpendicular direction. The perpendicular diffusion can be estimated from mixing length arguments using the characteristic velocities and lengths perpendicular to the rotation axis. Deviations are observed for small Schmidt numbers, for which turbulent transport decreases and molecular diffusion becomes more significant.