Do you want to publish a course? Click here

Effects of energy dependent spacetime on geometrical thermodynamics and heat engine of black holes: gravitys rainbow

246   0   0.0 ( 0 )
 Added by Behzad Eslam Panah
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Inspired by applications of gravitys rainbow in UV completion of general relativity, we investigate charged topological black holes in gravitys rainbow and show that depending on the values of different parameters, these solutions may encounter with black hole solutions with two horizons, extreme black hole (one horizon) or naked singularity (without horizon). First, we obtain black hole solutions, calculate thermodynamical quantities of the system and check the first law of thermodynamics. Then, we study the thermodynamical behavior of the system including thermal stability and phase transitions. In addition, we employ geometrical thermodynamics to probe phase transition points and limits on having physical solutions. Finally, we obtain heat engines corresponding to these black holes. The goal is to see how black holes parameters such as topological factor and rainbow functions would affect efficiency of the heat engines.



rate research

Read More

We investigate the thermodynamics of a general class of exact 4-dimensional asymptotically Anti-de Sitter hairy black hole solutions and show that, for a fixed temperature, there are small and large hairy black holes similar to the Schwarzschild-AdS black hole. The large black holes have positive specific heat and so they can be in equilibrium with a thermal bath of radiation at the Hawking temperature. The relevant thermodynamic quantities are computed by using the Hamiltonian formalism and counterterm method. We explicitly show that there are first order phase transitions similar to the Hawking-Page phase transition.
We study the thermodynamics of $AdS_4$ black hole solutions of Einstein-Maxwell theory that are accelerating, rotating, and carry electric and magnetic charges. We focus on the class for which the black hole horizon is a spindle and can be uplifted on regular Sasaki-Einstein spaces to give solutions of $D=11$ supergravity that are free from conical singularities. We use holography to calculate the Euclidean on-shell action and to define a set of conserved charges which give rise to a first law. We identify a complex locus of supersymmetric and non-extremal solutions, defined through an analytic continuation of the parameters, upon which we obtain a simple expression for the on-shell action. A Legendre transform of this action combined with a reality constraint then leads to the Bekenstein-Hawking entropy for the class of supersymmetric and extremal black holes.
We present a class of charged black hole solutions in an ($n+2)$-dimensional massive gravity with a negative cosmological constant, and study thermodynamics and phase structure of the black hole solutions both in grand canonical ensemble and canonical ensemble. The black hole horizon can have a positive, zero or negative constant curvature characterized by constant $k$. By using Hamiltonian approach, we obtain conserved charges of the solutions and find black hole entropy still obeys the area formula and the gravitational field equation at the black hole horizon can be cast into the first law form of black hole thermodynamics. In grand canonical ensemble, we find that thermodynamics and phase structure depends on the combination $k -mu^2/4 +c_2 m^2$ in the four dimensional case, where $mu$ is the chemical potential and $c_2m^2$ is the coefficient of the second term in the potential associated with graviton mass. When it is positive, the Hawking-Page phase transition can happen, while as it is negative, the black hole is always thermodynamically stable with a positive capacity. In canonical ensemble, the combination turns out to be $k+c_2m^2$ in the four dimensional case. When it is positive, a first order phase transition can happen between small and large black holes if the charge is less than its critical one. In higher dimensional ($n+2 ge 5$) case, even when the charge is absent, the small/large black hole phase transition can also appear, the coefficients for the third ($c_3m^2$) and/or the fourth ($c_4m^2$) terms in the potential associated with graviton mass in the massive gravity can play the same role as the charge does in the four dimensional case.
167 - Baocheng Zhang 2016
It is well-known that the thermal Hawking-like radiation can be emitted from the acoustic horizon, but the thermodynamic-like understanding for acoustic black holes was rarely made. In this paper, we will show that the kinematic connection can lead to the dynamic connection at the horizon between the fluid and gravitational models in two dimension, which implies that there exists the thermodynamic-like description for acoustic black holes. Then, we discuss the first law of thermodynamics for the acoustic black hole via an intriguing connection between the gravitational-like dynamics of the acoustic horizon and thermodynamics. We obtain a universal form for the entropy of acoustic black holes, which has an interpretation similar to the entropic gravity. We also discuss the specific heat, and find that the derivative of the velocity of background fluid can be regarded as a novel acoustic analogue of the two-dimensional dilaton potential, which interprets why the two-dimensional fluid dynamics can be connected to the gravitational dynamics but difficult for four-dimensional case. In particular, when a constraint is added for the fluid, the analogue of a Schwarzschild black hole can be realized.
In this paper, we investigate thermodynamical structure of dyonic black holes in the presence of gravitys rainbow. We confirm that for super magnetized and highly pressurized scenarios, the number of black holes phases is reduced to a single phase. In addition, due to specific coupling of rainbow functions, it is possible to track the effects of temporal and spatial parts of our setup on thermodynamical quantities/behaviors including equilibrium point, existence of multiple phases, possible phase transitions and conditions for having a uniform stable structure.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا