Do you want to publish a course? Click here

Thermodynamics of accelerating and supersymmetric $AdS_4$ black holes

144   0   0.0 ( 0 )
 Added by Jerome P. Gauntlett
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the thermodynamics of $AdS_4$ black hole solutions of Einstein-Maxwell theory that are accelerating, rotating, and carry electric and magnetic charges. We focus on the class for which the black hole horizon is a spindle and can be uplifted on regular Sasaki-Einstein spaces to give solutions of $D=11$ supergravity that are free from conical singularities. We use holography to calculate the Euclidean on-shell action and to define a set of conserved charges which give rise to a first law. We identify a complex locus of supersymmetric and non-extremal solutions, defined through an analytic continuation of the parameters, upon which we obtain a simple expression for the on-shell action. A Legendre transform of this action combined with a reality constraint then leads to the Bekenstein-Hawking entropy for the class of supersymmetric and extremal black holes.



rate research

Read More

We study solutions in the Plebanski--Demianski family which describe an accelerating, rotating and dyonically charged black hole in $AdS_4$. These are solutions of $D=4$ Einstein-Maxwell theory with a negative cosmological constant and hence minimal $D=4$ gauged supergravity. It is well known that when the acceleration is non-vanishing the $D=4$ black hole metrics have conical singularities. By uplifting the solutions to $D=11$ supergravity using a regular Sasaki-Einstein $7$-manifold, $SE_7$, we show how the free parameters can be chosen to eliminate the conical singularities. Topologically, the $D=11$ solutions incorporate an $SE_7$ fibration over a two-dimensional weighted projective space, $mathbb{WCP}^1_{[n_-,n_+]}$, also known as a spindle, which is labelled by two integers that determine the conical singularities of the $D=4$ metrics. We also discuss the supersymmetric and extremal limit and show that the near horizon limit gives rise to a new family of regular supersymmetric $AdS_2times Y_9$ solutions of $D=11$ supergravity, which generalise a known family by the addition of a rotation parameter. We calculate the entropy of these black holes and argue that it should be possible to derive this from certain ${cal N}=2$, $d=3$ quiver gauge theories compactified on a spinning spindle with appropriate magnetic flux.
144 - Adam Ball , Noah Miller 2020
We derive a thermodynamic first law for the electrically charged C-metric with vanishing cosmological constant. This spacetime describes a pair of identical accelerating black holes each pulled by a cosmic string. Treating the boost time of this spacetime as the canonical time, we find a thermodynamic first law in which every term has an unambiguous physical meaning. We then show how this first law can be derived using Noetherian methods in the covariant phase space formalism. We argue that the area of the acceleration horizon contributes to the entropy and that the appropriate notion of energy of this spacetime is a boost mass, which vanishes identically. The recovery of the Reissner-Nordstrom first law in the limit of small string tension is also demonstrated. Finally, we compute the action of the Euclidean section of the C-metric and show it agrees with the thermodynamic grand potential, providing an independent confirmation of the validity of our first law. We also briefly speculate on the significance of firewalls in this spacetime.
88 - Adam Ball 2021
We generalize the first law of black hole mechanics to the rotating, charged C-metric and to the Ernst metric, both of which have the charged C-metric as a special case. All of these metrics are (3+1)-dimensional, have vanishing cosmological constant, and physically describe a pair of black holes pulled apart to null infinity by some external force. Our first laws are global in the sense of applying to an entire patch of spacetime, as opposed to a neighborhood of the black hole. They are formulated with respect to boost time, whose primacy is motivated by the celestial holographic approach to scattering amplitudes.
90 - Marco Astorino 2016
The near horizon geometry of the rotating C-metric, describing accelerating Kerr-Newman black holes, is analysed. It is shown that, at extremality, even though not it is isomorphic to the extremal Kerr-Newman, it remains a warped and twisted product of $AdS_2 times S^2$. Therefore the methods of the Kerr/CFT correspondence can successfully be applied to build a CFT dual model, whose entropy reproduce, through the Cardy formula, the Beckenstein-Hawking entropy of the accelerating black hole. The mass of accelerating Kerr-Newman black hole, which fulfil the first law of thermodynamics, is presented. Further generalisation in presence of an external Melvin-like magnetic field, used to regularise the conical singularity characteristic of the C-metrics, shows that the Kerr/CFT correspondence can be applied also for the accelerating and magnetised extremal black holes.
We use the recipe of arXiv:1003.2974 to find half-BPS near-horizon geometries in the t$^3$ model of $N=2$, $D=4$ gauged supergravity, and explicitely construct some new examples. Among these are black holes with noncompact horizons, but also with spherical horizons that have conical singularities (spikes) at one of the two poles. A particular family of them is extended to the full black hole geometry. Applying a double-Wick rotation to the near-horizon region, we obtain solutions with NUT charge that asymptote to curved domain walls with AdS$_3$ world volume. These new solutions may provide interesting testgrounds to address fundamental questions related to quantum gravity and holography.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا