No Arabic abstract
We apply an analytic theory for environmentally-dependent molecular cloud lifetimes to the Central Molecular Zone of the Milky Way. Within this theory, the cloud lifetime in the Galactic centre is obtained by combining the time-scales for gravitational instability, galactic shear, epicyclic perturbations and cloud-cloud collisions. We find that at galactocentric radii $sim 45$-$120$ pc, corresponding to the location of the 100-pc stream, cloud evolution is primarily dominated by gravitational collapse, with median cloud lifetimes between 1.4 and 3.9 Myr. At all other galactocentric radii, galactic shear dominates the cloud lifecycle, and we predict that molecular clouds are dispersed on time-scales between 3 and 9 Myr, without a significant degree of star formation. Along the outer edge of the 100-pc stream, between radii of 100 and 120 pc, the time-scales for epicyclic perturbations and gravitational free-fall are similar. This similarity of time-scales lends support to the hypothesis that, depending on the orbital geometry and timing of the orbital phase, cloud collapse and star formation in the 100-pc stream may be triggered by a tidal compression at pericentre. Based on the derived time-scales, this should happen in approximately 20 per cent of all accretion events onto the 100-pc stream.
The H3+ molecule has been detected in many lines of sight within the central molecular zone (CMZ) with exceptionally large column densities and unusual excitation properties compared to diffuse local clouds. The detection of the (3,3) metastable level has been suggested to be the signature of warm and diffuse gas in the CMZ. We use the Meudon PDR code to re-examine the relationship between the column density of H3+ and the cosmic-ray ionization rate, $zeta$, up to large values of $zeta$. We study the impact of the various mechanisms that can excite H3+ in its metastable state. We produce grids of PDR models exploring different parameters ($zeta$, size of clouds, metallicity) and infer the physical conditions that best match the observations toward ten lines of sight in the CMZ. For one of them, Herschel observations of HF, OH+, H2O+, and H3O+ can be used as additional constraints. We check that the results found for H3+ also account for the observations of these molecules. We find that the linear relationship between N(H3+) and $zeta$ only holds up to a certain value of the cosmic-ray ionization rate, which depends on the proton density. A value $zeta sim 1 - 11 times 10^{-14}$ s$^{-1}$ explains both the large observed H3+ column density and its excitation in the metastable level (3,3) in the CMZ. It also reproduces N(OH+), N(H2O+) and N(H3O+) detected toward Sgr B2(N). We confirm that the CMZ probed by H3+ is diffuse, nH $lesssim$ 100 cm-3 and warm, T $sim$ 212-505 K. This warm medium is due to cosmic-ray heating. We also find that the diffuse component probed by H3+ must fill a large fraction of the CMZ. Finally, we suggest the warm gas in the CMZ enables efficient H2 formation via chemisorption sites as in PDRs. This contributes to enhance the abundance of H3+ in this high cosmic-ray flux environment.
Supernovae (SNe) dominate the energy and momentum budget of stellar feedback, but the efficiency with which they couple to the interstellar medium (ISM) depends strongly on how effectively early, pre-SN feedback clears dense gas from star-forming regions. There are observational constraints on the magnitudes and timescales of early stellar feedback in low ISM pressure environments, yet no such constraints exist for more cosmologically typical high ISM pressure environments. In this paper, we determine the mechanisms dominating the expansion of HII regions as a function of size-scale and evolutionary time within the high-pressure ($P/k_rm{B}$~$10^{7-8}$K cm$^{-3}$) environment in the inner 100pc of the Milky Way. We calculate the thermal pressure from the warm ionised ($P_rm{HII}$; 10$^{4}$K) gas, direct radiation pressure ($P_rm{dir}$), and dust processed radiation pressure ($P_rm{IR}$). We find that (1) $P_rm{dir}$ dominates the expansion on small scales and at early times (0.01-0.1pc; $<$0.1Myr); (2) the expansion is driven by $P_rm{HII}$ on large scales at later evolutionary stages ($>0.1$pc; $>1$Myr); (3) during the first ~1Myr of growth, but not thereafter, either $P_{rm IR}$ or stellar wind pressure likely make a comparable contribution. Despite the high confining pressure of the environment, natal star-forming gas is efficiently cleared to radii of several pc within ~2Myr, i.e. before the first SNe explode. This `pre-processing means that subsequent SNe will explode into low density gas, so their energy and momentum will efficiently couple to the ISM. We find the HII regions expand to a radius of 3pc, at which point they have internal pressures equal with the surrounding external pressure. A comparison with HII regions in lower pressure environments shows that the maximum size of all HII regions is set by pressure equilibrium with the ambient ISM.
The role of large-scale stellar feedback in the formation of molecular clouds has been investigated observationally by examining the relationship between HI and 12CO(J=1-0) in supershells. Detailed parsec-resolution case studies of two Milky Way supershells demonstrate an enhanced level of molecularisation over both objects, and hence provide the first quantitative observational evidence of increased molecular cloud production in volumes of space affected by supershell activity. Recent results on supergiant shells in the LMC suggest that while they do indeed help to organise the ISM into over-dense structures, their global contribution to molecular cloud formation is of the order of only ~10%.
The Milky Ways central molecular zone (CMZ) has emerged in recent years as a unique laboratory for the study of star formation. Here we use the simulations presented in Tress et al. 2020 to investigate star formation in the CMZ. These simulations resolve the structure of the interstellar medium at sub-parsec resolution while also including the large-scale flow in which the CMZ is embedded. Our main findings are as follows. (1) While most of the star formation happens in the CMZ ring at $Rgtrsim100 {, rm pc}$, a significant amount also occurs closer to SgrA* at $R lesssim 10{, rm pc}$. (2) Most of the star formation in the CMZ happens downstream of the apocentres, consistent with the pearls-on-a-string scenario, and in contrast to the notion that an absolute evolutionary timeline of star formation is triggered by pericentre passage. (3) Within the timescale of our simulations ($sim100$ Myr), the depletion time of the CMZ is constant within a factor of $sim2$. This suggests that variations in the star formation rate are primarily driven by variations in the mass of the CMZ, caused for example by AGN feedback or externally-induced changes in the bar-driven inflow rate, and not by variations in the depletion time. (4) We study the trajectories of newly born stars in our simulations. We find several examples that have age and 3D velocity compatible with those of the Arches and Quintuplet clusters. Our simulations suggest that these prominent clusters originated near the collision sites where the bar-driven inflow accretes onto the CMZ, at symmetrical locations with respect to the Galactic centre, and that they have already decoupled from the gas in which they were born.
We use hydrodynamical simulations to study the Milky Ways central molecular zone (CMZ). The simulations include a non-equilibrium chemical network, the gas self-gravity, star formation and supernova feedback. We resolve the structure of the interstellar medium at sub-parsec resolution while also capturing the interaction between the CMZ and the bar-driven large-scale flow out to $Rsim 5kpc$. Our main findings are as follows: (1) The distinction between inner ($Rlesssim120$~pc) and outer ($120lesssim Rlesssim450$~pc) CMZ that is sometimes proposed in the literature is unnecessary. Instead, the CMZ is best described as single structure, namely a star-forming ring with outer radius $Rsimeq 200$~pc which includes the 1.3$^circ$ complex and which is directly interacting with the dust lanes that mediate the bar-driven inflow. (2) This accretion can induce a significant tilt of the CMZ out of the plane. A tilted CMZ might provide an alternative explanation to the $infty$-shaped structure identified in Herschel data by Molinari et al. 2011. (3) The bar in our simulation efficiently drives an inflow from the Galactic disc ($Rsimeq 3$~kpc) down to the CMZ ($Rsimeq200$~pc) of the order of $1rm,M_odot,yr^{-1}$, consistent with observational determinations. (4) Supernova feedback can drive an inflow from the CMZ inwards towards the circumnuclear disc of the order of $sim0.03,rm M_odot,yr^{-1}$. (5) We give a new interpretation for the 3D placement of the 20 and 50 km s$^{-1}$ clouds, according to which they are close ($Rlesssim30$~pc) to the Galactic centre, but are also connected to the larger-scale streams at $Rgtrsim100$~pc.