No Arabic abstract
Given a physical device as a black box, one can in principle fully reconstruct its input-output transfer function by repeatedly feeding different input probes through the device and performing different measurements on the corresponding outputs. However, for such a complete tomographic reconstruction to work, full knowledge of both input probes and output measurements is required. Such an assumption is not only experimentally demanding, but also logically questionable, as it produces a circular argument in which the characterization of unknown devices appears to require other devices to have been already characterized beforehand. Here, we introduce a method to overcome such limitations present in usual tomographic techniques. We show that, even without any knowledge about the tomographic apparatus, it is still possible to infer the unknown device to a high degree of precision, solely relying on the observed data. This is achieved by employing a criterion that singles out the minimal explanation compatible with the observed data. Our method, that can be seen as a data-driven analogue of tomography, is solved analytically and implemented as an algorithm for the learning of qubit channels.
Data-driven inference was recently introduced as a protocol that, upon the input of a set of data, outputs a mathematical description for a physical device able to explain the data. The device so inferred is automatically self-consistent, that is, capable of generating all given data, and least committal, that is, consistent with a minimal superset of the given dataset. When applied to the inference of an unknown device, data-driven inference has been shown to output always the true device whenever the dataset has been produced by means of an observationally complete setup, which plays here the same role played by informationally complete setups in conventional quantum tomography. In this paper we develop a unified formalism for the data-driven inference of states and measurements. In the case of qubits, in particular, we provide an explicit implementation of the inference protocol as a convex programming algorithm for the machine learning of states and measurements. We also derive a complete characterization of observational completeness for general systems, from which it follows that only spherical 2-designs achieve observational completeness for qubit systems. This result provides symmetric informationally complete sets and mutually unbiased bases with a new theoretical and operational justification.
The range of a quantum measurement is the set of outcome probability distributions that can be produced by varying the input state. We introduce data-driven inference as a protocol that, given a set of experimental data as a collection of outcome distributions, infers the quantum measurement which is, i) consistent with the data, in the sense that its range contains all the distributions observed, and, ii) maximally noncommittal, in the sense that its range is of minimum volume in the space of outcome distributions. We show that data-driven inference is able to return a unique measurement for any data set if and only if the inference adopts a (hyper)-spherical state space (for example, the classical or the quantum bit). In analogy to informational completeness for quantum tomography, we define observational completeness as the property of any set of states that, when fed into any given measurement, produces a set of outcome distributions allowing for the correct reconstruction of the measurement via data-driven inference. We show that observational completeness is strictly stronger than informational completeness, in the sense that not all informationally complete sets are also observationally complete. Moreover, we show that for systems with a (hyper)-spherical state space, the only observationally complete simplex is the regular one, namely, the symmetric informationally complete set.
We present a model-free data-driven inference method that enables inferences on system outcomes to be derived directly from empirical data without the need for intervening modeling of any type, be it modeling of a material law or modeling of a prior distribution of material states. We specifically consider physical systems with states characterized by points in a phase space determined by the governing field equations. We assume that the system is characterized by two likelihood measures: one $mu_D$ measuring the likelihood of observing a material state in phase space; and another $mu_E$ measuring the likelihood of states satisfying the field equations, possibly under random actuation. We introduce a notion of intersection between measures which can be interpreted to quantify the likelihood of system outcomes. We provide conditions under which the intersection can be characterized as the athermal limit $mu_infty$ of entropic regularizations $mu_beta$, or thermalizations, of the product measure $mu = mu_Dtimes mu_E$ as $beta to +infty$. We also supply conditions under which $mu_infty$ can be obtained as the athermal limit of carefully thermalized $(mu_{h,beta_h})$ sequences of empirical data sets $(mu_h)$ approximating weakly an unknown likelihood function $mu$. In particular, we find that the cooling sequence $beta_h to +infty$ must be slow enough, corresponding to quenching, in order for the proper limit $mu_infty$ to be delivered. Finally, we derive explicit analytic expressions for expectations $mathbb{E}[f]$ of outcomes $f$ that are explicit in the data, thus demonstrating the feasibility of the model-free data-driven paradigm as regards making convergent inferences directly from the data without recourse to intermediate modeling steps.
Programmers often leverage data structure libraries that provide useful and reusable abstractions. Modular verification of programs that make use of these libraries naturally rely on specifications that capture important properties about how the library expects these data structures to be accessed and manipulated. However, these specifications are often missing or incomplete, making it hard for clients to be confident they are using the library safely. When library source code is also unavailable, as is often the case, the challenge to infer meaningful specifications is further exacerbated. In this paper, we present a novel data-driven abductive inference mechanism that infers specifications for library methods sufficient to enable verification of the librarys clients. Our technique combines a data-driven learning-based framework to postulate candidate specifications, along with SMT-provided counterexamples to refine these candidates, taking special care to prevent generating specifications that overfit to sampled tests. The resulting specifications form a minimal set of requirements on the behavior of library implementations that ensures safety of a particular client program. Our solution thus provides a new multi-abduction procedure for precise specification inference of data structure libraries guided by client-side verification tasks. Experimental results on a wide range of realistic OCaml data structure programs demonstrate the effectiveness of the approach.
We prove that any two general probabilistic theories (GPTs) are entangleable, in the sense that their composite exhibits either entangled states or entangled measurements, if and only if they are both non-classical, meaning that neither of the state spaces is a simplex. This establishes the universal equivalence of the (local) superposition principle and the existence of global entanglement, valid in a fully theory-independent way. As an application of our techniques, we show that all non-classical GPTs exhibit a strong form of incompatibility of states and measurements, and use this to construct a version of the BB84 protocol that works in any non-classical GPT.