No Arabic abstract
We study multifield inflation in scenarios where the fields are coupled non-minimally to gravity via $xi_I(phi^I)^n g^{mu u}R_{mu u}$, where $xi_I$ are coupling constants, $phi^I$ the fields driving inflation, $g_{mu u}$ the space-time metric, $R_{mu u}$ the Ricci tensor, and $n>0$. We consider the so-called $alpha$-attractor models in two formulations of gravity: in the usual metric case where $R_{mu u}=R_{mu u}(g_{mu u})$, and in the Palatini formulation where $R_{mu u}$ is an independent variable. As the main result, we show that, regardless of the underlying theory of gravity, the field-space curvature in the Einstein frame has no influence on the inflationary dynamics at the limit of large $xi_I$, and one effectively retains the single-field case. However, the gravity formulation does play an important role: in the metric case the result means that multifield models approach the single-field $alpha$-attractor limit, whereas in the Palatini case the attractor behaviour is lost also in the case of multifield inflation. We discuss what this means for distinguishing between different models of inflation.
We revisit the notion of slow-roll in the context of general single-field inflation. As a generalization of slow-roll dynamics, we consider an inflaton $phi$ in an attractor phase where the time derivative of $phi$ is determined by a function of $phi$, $dotphi=dotphi(phi)$. In other words, we consider the case when the number of $e$-folds $N$ counted backward in time from the end of inflation is solely a function of $phi$, $N=N(phi)$. In this case, it is found that we need a new independent parameter to properly describe the dynamics of the inflaton field in general, in addition to the standard parameters conventionally denoted by $epsilon$, $eta$, $c_s^2$ and $s$. Two illustrative examples are presented to discuss the non-slow-roll dynamics of the inflaton field consistent with observations.
Non-attractor inflation is known as the only single field inflationary scenario that can violate non-Gaussianity consistency relation with the Bunch-Davies vacuum state and generate large local non-Gaussianity. However, it is also known that the non-attractor inflation by itself is incomplete and should be followed by a phase of slow-roll attractor. Moreover, there is a transition process between these two phases. In the past literature, this transition was approximated as instant and the evolution of non-Gaussianity in this phase was not fully studied. In this paper, we follow the detailed evolution of the non-Gaussianity through the transition phase into the slow-roll attractor phase, considering different types of transition. We find that the transition process has important effect on the size of the local non-Gaussianity. We first compute the net contribution of the non-Gaussianities at the end of inflation in canonical non-attractor models. If the curvature perturbations keep evolving during the transition - such as in the case of smooth transition or some sharp transition scenarios - the $mathcal{O}(1)$ local non-Gaussianity generated in the non-attractor phase can be completely erased by the subsequent evolution, although the consistency relation remains violated. In extremal cases of sharp transition where the super-horizon modes freeze immediately right after the end of the non-attractor phase, the original non-attractor result can be recovered. We also study models with non-canonical kinetic terms, and find that the transition can typically contribute a suppression factor in the squeezed bispectrum, but the final local non-Gaussianity can still be made parametrically large.
The possibility that primordial black holes constitute a fraction of dark matter motivates a detailed study of possible mechanisms for their production. Black holes can form by the collapse of primordial curvature fluctuations, if the amplitude of their small scale spectrum gets amplified by several orders of magnitude with respect to CMB scales. Such enhancement can for example occur in single-field inflation that exhibit a transient non-attractor phase: in this work, we make a detailed investigation of the shape of the curvature spectrum in this scenario. We make use of an analytical approach based on a gradient expansion of curvature perturbations, which allows us to follow the changes in slope of the spectrum during its way from large to small scales. After encountering a dip in its amplitude, the spectrum can acquire steep slopes with a spectral index up to $n_s-1,=,8$, to then relax to a more gentle growth with $n_s-1,lesssim,3$ towards its peak, in agreement with the results found in previous literature. For scales following the peak associated with the presence of the non-attractor phase, the spectrum amplitude then mildly decays, during a transitional stage from non-attractor back to attractor evolution. Our analysis indicates that this gradient approach offers a transparent understanding of the contributions controlling the slope of the curvature spectrum. As an application of our findings, we characterise the slope in frequency of a stochastic gravitational wave background generated at second order from curvature fluctuations, using the more accurate information we gained on the shape of curvature power spectrum.
Stochastic inflation is an effective theory describing the super-Hubble, coarse-grained, scalar fields driving inflation, by a set of Langevin equations. We previously highlighted the difficulty of deriving a theory of stochastic inflation that is invariant under field redefinitions, and the link with the ambiguity of discretisation schemes defining stochastic differential equations. In this paper, we solve the issue of these inflationary stochastic anomalies by using the Stratonovich discretisation satisfying general covariance, and identifying that the quantum nature of the fluctuating fields entails the existence of a preferred frame defining independent stochastic noises. Moreover, we derive physically equivalent It^o-Langevin equations that are manifestly covariant and well suited for numerical computations. These equations are formulated in the general context of multifield inflation with curved field space, taking into account the coupling to gravity as well as the full phase space in the Hamiltonian language, but this resolution is also relevant in simpler single-field setups. We also develop a path-integral derivation of these equations, which solves conceptual issues of the heuristic approach made at the level of the classical equations of motion, and allows in principle to compute corrections to the stochastic formalism. Using the Schwinger-Keldysh formalism, we integrate out small-scale fluctuations, derive the influence action that describes their effects on the coarse-grained fields, and show how the resulting coarse-grained effective Hamiltonian action can be interpreted to derive Langevin equations with manifestly real noises. Although the corresponding dynamics is not rigorously Markovian, we show the covariant, phase-space Fokker-Planck equation for the Probability Density Function of fields and momenta when the Markovian approximation is relevant [...]
In this paper, we apply reconstruction techniques to recover the potential parameters for a particular class of single-field models, the $alpha$-attractor (supergravity) models of inflation. This also allows to derive the inflaton vacuum expectation value at horizon crossing. We show how to use this value as one of the input variables to constrain the postaccelerated inflationary phase. We assume that the tensor-to-scalar ratio $r$ is of the order of $10^{-3}$ , a level reachable by the expected sensitivity of the next-generation CMB experiments.