Do you want to publish a course? Click here

Transverse Kerker Scattering for Angstrom Localization of Nanoparticles

85   0   0.0 ( 0 )
 Added by Ankan Bag
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Angstrom precision localization of a single nanoantenna is a crucial step towards advanced nanometrology, medicine and biophysics. Here, we show that single nanoantenna displacements down to few Angstroms can be resolved with sub-Angstrom precision using an all-optical method. We utilize the tranverse Kerker scattering scheme where a carefully structured light beam excites a combination of multipolar modes inside a dielectric nanoantenna, which then upon interference, scatters directionally into the far-field. We spectrally tune our scheme such that it is most sensitive to the change in directional scattering per nanoantenna displacement. Finally, we experimentally show that antenna displacement down to 3 Angstrom is resolvable with a localization precision of 0.6 Angstrom.

rate research

Read More

Transverse Kerker effect is known by the directional scattering of an electromagnetic plane wave perpendicular to the propagation direction with nearly suppression of both forward and backward scattering. Compared with plane waves, localized electromagnetic emitters are more general sources in modern nanophotonics. As a typical example, manipulating the emission direction of a quantum dot is of virtue importance for the investigation of on-chip quantum optics and quantum information processing. Herein, we introduce the concept of transverse Kerker effect of localized electromagnetic sources utilizing a subwavelength dielectric antenna, where the radiative power of magnetic, electric and more general chiral dipole emitters can be dominantly directed along its dipole moment with nearly suppression of radiation perpendicular to the dipole moments. Such transverse Kerker effect is also associated with Purcell enhancement mediated by electromagnetic multipolar resonances induced in the dielectric antenna. Analytical conditions of transverse Kerker effect are derived for the magnetic dipole, electric dipole and chiral dipole emitters. We further provide microwave experiment validation for the magnetic dipole emitter. Our results provide new physical mechanisms to manipulate the emission properties of localized electromagnetic source which might facilitate the on-chip quantum optics and beyond.
Transmission eigenchannels are building blocks of coherent wave transport in diffusive media, and selective excitation of individual eigenchannels can lead to diverse transport behavior. An essential yet poorly understood property is the transverse spatial profile of each eigenchannel, which is critical for coupling into and out of it. Here, we discover that the transmission eigenchannels of a disordered slab possess localized incident and outgoing profiles, even in the diffusive regime far from Anderson localization. Such transverse localization arises from a combination of reciprocity, local coupling of spatial modes, and nonlocal correlations of scattered waves. Experimentally, we observe signatures of such localization despite finite illumination area. Our results reveal the intrinsic characteristics of transmission eigenchannels in the open slab geometry, commonly used for applications in imaging and energy transfer through turbid media.
We study the near field to the far field evolution of spin angular momentum (SAM) density and the Poynting vector of the scattered waves from spherical scatterers. The results show that at the near field, the SAM density and the Poynting vector are dominated by their transverse components. While the former (transverse SAM) is independent of the helicity of the incident circular polarization state, the latter (transverse Poynting vector) depends upon the polarization state. It is further demonstrated that the magnitudes and the spatial extent of the transverse SAM and the transverse momentum components can be controllably enhanced by exploiting the interference of the transverse electric and transverse magnetic scattering modes.
We investigate numerically the effect of long-range interaction on the transverse localization of light. To this end, nonlinear zigzag optical waveguide lattices are applied, which allows precise tuning of the second-order coupling. We find that localization is hindered by coupling between next-nearest lattice sites. Additionally, (focusing) nonlinearity facilitates localization with increasing disorder, as long as the nonlinearity is sufficiently weak. However, for strong nonlinearities, increasing disorder results in weaker localization. The threshold nonlinearity, above which this anomalous result is observed grows with increasing second-order coupling.
Mostly forsaken, but revived after the emergence of all-dielectric nanophotonics, the Kerker effect can be observed in a variety of nanostructures from high-index constituents with strong electric and magnetic Mie resonances. Necessary requirement for the existence of a magnetic response limits the use of generally non-magnetic conventional plasmonic nanostructures for the Kerker effect. In spite of this, we demonstrate here for the first time the emergence of the lattice Kerker effect in regular plasmonic Al nanostructures. Collective lattice oscillations emerging from delicate interplay between Rayleigh anomalies and localized surface plasmon resonances both of electric and magnetic dipoles, and electric and magnetic quadrupoles result in suppression of the backscattering in a broad spectral range. Variation of geometrical parameters of Al arrays allows for tailoring lattice Kerker effect throughout UV and visible wavelength ranges, which is close to impossible to achieve using other plasmonic or all-dielectric materials. It is argued that our results set the ground for wide ramifications in the plasmonics and further application of the Kerker effect.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا