Do you want to publish a course? Click here

Collective suppression of optical hyperfine pumping in dense clouds of atoms in microtraps

51   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We observe a density-dependent collective suppression of optical pumping between the hyperfine ground states in an array of submicrometer-sized clouds of cold rubidium atoms. The suppressed Raman transition rate can be explained by strong resonant dipole-dipole interactions that are enhanced by increasing atom density. The observations are consistent with stochastic electrodynamics simulations that incorporate the effects of the nonlinear population transfer via internal atomic levels embedded in a coupled-dipole model.



rate research

Read More

We report on the origin of fragmentation of ultracold atoms observed on a permanent magnetic film atom chip. A novel technique is used to characterize small spatial variations of the magnetic field near the film surface using radio frequency spectroscopy of the trapped atoms. Direct observations indicate the fragmentation is due to a corrugation of the magnetic potential caused by long range inhomogeneity in the film magnetization. A model which takes into account two-dimensional variations of the film magnetization is consistent with the observations.
Polar molecules in selected quantum states can be guided, decelerated and trapped using electric fields created by microstructured electrodes on a chip. Here we explore how non-adiabatic transitions between levels in which the molecules are trapped and levels in which the molecules are not trapped can be suppressed. We use 12-CO and 13-CO (a 3-Pi(1), v=0) molecules, prepared in the upper Lambda-doublet component of the J=1 rotational level, and study the trap loss as a function of an offset magnetic field. The experimentally observed suppression (enhancement) of the non-adiabatic transitions for 12-CO (13-CO) with increasing magnetic field is quantitatively explained.
We realize a mechanical analogue of the Dicke model, achieved by coupling the spin of individual neutral atoms to their quantized motion in an optical trapping potential. The atomic spin states play the role of the electronic states of the atomic ensemble considered in the Dicke model, and the in-trap motional states of the atoms correspond to the states of the electromagnetic field mode. The coupling between spin and motion is induced by an inherent polarization gradient of the trapping light fields, which leads to a spatially varying vector light shift. We experimentally show that our system reaches the ultra-strong coupling regime, i.e., we obtain a coupling strength which is a significant fraction of the trap frequency. Moreover, with the help of an additional light field, we demonstrate the in-situ tuning of the coupling strength. Beyond its fundamental interest, the demonstrated one-to-one mapping between the physics of optically trapped cold atoms and the Dicke model paves the way for implementing protocols and applications that exploit extreme coupling strengths.
We have realized a two dimensional permanent magnetic lattice of Ioffe-Pritchard microtraps for ultracold atoms. The lattice is formed by a single 300 nm magnetized layer of FePt, patterned using optical lithography. Our magnetic lattice consists of more than 15000 tightly confining microtraps with a density of 1250 traps/mm$^2$. Simple analytical approximations for the magnetic fields produced by the lattice are used to derive relevant trap parameters. We load ultracold atoms into at least 30 lattice sites at a distance of approximately 10 $mu$m from the film surface. The present result is an important first step towards quantum information processing with neutral atoms in magnetic lattice potentials.
The interaction of light with an atomic sample containing a large number of particles gives rise to many collective (or cooperative) effects, such as multiple scattering, superradiance and subradiance, even if the atomic density is low and the incident optical intensity weak (linear optics regime). Tracing over the degrees of freedom of the light field, the system can be well described by an effective atomic Hamiltonian, which contains the light-mediated dipole-dipole interaction between atoms. This long-range interaction is at the origin of the various collective effects, or of collective excitation modes of the system. Even though an analysis of the eigenvalues and eigenfunctions of these collective modes does allow distinguishing superradiant modes, for instance, from other collective modes, this is not sufficient to understand the dynamics of a driven system, as not all collective modes are significantly populated. Here, we study how the excitation parameters, i.e. the driving field, determines the population of the collective modes. We investigate in particular the role of the laser detuning from the atomic transition, and demonstrate a simple relation between the detuning and the steady-state population of the modes. This relation allows understanding several properties of cooperative scattering, such as why superradiance and subradiance become independent of the detuning at large enough detuning without vanishing, and why superradiance, but not subradiance, is suppressed near resonance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا