Do you want to publish a course? Click here

Wrapping liquids, solids, and gases in thin sheets

96   0   0.0 ( 0 )
 Added by Joseph Paulsen
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Many objects in nature and industry are wrapped in a thin sheet to enhance their chemical, mechanical, or optical properties. There are similarly a variety of methods for wrapping, from pressing a film onto a hard substrate, to using capillary forces to spontaneously wrap droplets, to inflating a closed membrane. Each of these settings raises challenging nonlinear problems involving the geometry and mechanics of a thin sheet, often in the context of resolving a geometric incompatibility between two surfaces. Here we review recent progress in this area, focusing on highly bendable films that are nonetheless hard to stretch, a class of materials that includes polymer films, metal foils, textiles, graphene, as well as some biological materials. Significant attention is paid to two recent advances: (i) a novel isometry that arises in the doubly-asymptotic limit of high flexibility and weak tensile forcing, and (ii) a simple geometric model for predicting the overall shape of an interfacial film while ignoring small-scale wrinkles, crumples, and folds.



rate research

Read More

We show that a viscoelastic thin sheet driven out of equilibrium by active structural remodelling develops a rich variety of shapes as a result of a competition between viscous relaxation and activity. In the regime where active processes are faster than viscoelastic relaxation, wrinkles that are formed due to remodelling are unable to relax to a configuration that minimises the elastic energy and the sheet is inherently out of equilibrium. We argue that this non-equilibrium regime is of particular interest in biology as it allows the system to access morphologies that are unavailable if restricted to the adiabatic evolution between configurations that minimise the elastic energy alone. Here, we introduce activity using the formalism of evolving target metric and showcase the diversity of wrinkling morphologies arising from out of equilibrium dynamics.
Despite the apparent ease with which a sheet of paper is crumpled and tossed away, crumpling dynamics are often considered a paradigm of complexity. This complexity arises from the infinite number of configurations a disordered crumpled sheet can take. Here we experimentally show that key aspects of crumpling have a very simple description; the evolution of the damage in crumpling dynamics can largely be described by a single global quantity, the total length of all creases. We follow the evolution of the damage network in repetitively crumpled elastoplastic sheets, and show that the dynamics of this quantity are deterministic, and depend only on the instantaneous state of the crease network and not at all on the crumpling history. We also show that this global quantity captures the crumpling dynamics of a sheet crumpled for the first time. This leads to a remarkable reduction in complexity, allowing a description of a highly disordered system by a single state parameter. Similar strategies may also be useful in analyzing other systems that evolve under geometric and mechanical constraints, from faulting of tectonic plates to the evolution of proteins.
The microscopic mechanism of thermal transport in liquids and amorphous solids has been an outstanding problem for a long time. There have been several different approaches to explain the thermal conductivities for these systems, for example, the Bridgmans formula for simple liquids, the concept of the minimum thermal conductivity for amorphous solids, and the thermal resistance network model for amorphous polymers. Here, we present a ubiquitous formula to explain the thermal conductivities of liquids and amorphous solids in a unified way. The calculated thermal conductivities using this formula without fitting parameters are in excellent agreement with the experimental data for these systems. Our formula is not only providing detailed implications on microscopic mechanisms of heat transfer in these systems, but also solves the discrepancies between existing formulae and experimental data.
Instabilities in thin elastic sheets, such as wrinkles, are of broad interest both from a fundamental viewpoint and also because of their potential for engineering applications. Nematic liquid crystal elastomers offer a new form of control of these instabilities through direct coupling between microscopic degrees of freedom, resulting from orientational ordering of rod-like molecules, and macroscopic strain. By a standard method of dimensional reduction, we construct a plate theory for thin sheets of nematic elastomer. We then apply this theory to the study of the formation of wrinkles due to compression of a thin sheet of nematic liquid crystal elastomer atop an elastic or fluid substrate. We find the scaling of the wrinkle wavelength in terms of material parameters and the applied compression. The wavelength of the wrinkles is found to be non-monotonic in the compressive strain owing to the presence of the nematic. Finally, due to soft modes, the critical stress for the appearance of wrinkles can be much higher than in an isotropic elastomer and depends nontrivially on the manner in which the elastomer was prepared.
95 - H. R. Schober 2001
The motion of the structure determining components is highly collective, both in amorphous solids and in undercooled liquids. This has been deduced from experimental low temperature data in the tunneling regime as well as from the vanishing isotope effect in diffusion in glasses and undercooled liquids. In molecular dynamics simulations of glasses one observes that both low frequency resonant vibrations and atomic jumps are centered on more than 10 atoms which, in densely packed materials, form chainlike structures. With increasing temperature the number of atoms jumping collectively increases. These chains of collectively jumping atoms are also seen in undercooled liquids. Collectivity only vanishes at higher temperatures. This collectivity is intimately related to the dynamic heterogeneity which causes a non-Gaussianity of the atomic displacements.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا