No Arabic abstract
Instabilities in thin elastic sheets, such as wrinkles, are of broad interest both from a fundamental viewpoint and also because of their potential for engineering applications. Nematic liquid crystal elastomers offer a new form of control of these instabilities through direct coupling between microscopic degrees of freedom, resulting from orientational ordering of rod-like molecules, and macroscopic strain. By a standard method of dimensional reduction, we construct a plate theory for thin sheets of nematic elastomer. We then apply this theory to the study of the formation of wrinkles due to compression of a thin sheet of nematic liquid crystal elastomer atop an elastic or fluid substrate. We find the scaling of the wrinkle wavelength in terms of material parameters and the applied compression. The wavelength of the wrinkles is found to be non-monotonic in the compressive strain owing to the presence of the nematic. Finally, due to soft modes, the critical stress for the appearance of wrinkles can be much higher than in an isotropic elastomer and depends nontrivially on the manner in which the elastomer was prepared.
Nematic elastomers dramatically change their shape in response to diverse stimuli including light and heat. In this paper, we provide a systematic framework for the design of complex three dimensional shapes through the actuation of heterogeneously patterned nematic elastomer sheets. These sheets are composed of textit{nonisometric origami} building blocks which, when appropriately linked together, can actuate into a diverse array of three dimensional faceted shapes. We demonstrate both theoretically and experimentally that: 1) the nonisometric origami building blocks actuate in the predicted manner, 2) the integration of multiple building blocks leads to complex multi-stable, yet predictable, shapes, 3) we can bias the actuation experimentally to obtain a desired complex shape amongst the multi-stable shapes. We then show that this experimentally realized functionality enables a rich possible design landscape for actuation using nematic elastomers. We highlight this landscape through theoretical examples, which utilize large arrays of these building blocks to realize a desired three dimensional origami shape. In combination, these results amount to an engineering design principle, which we hope will provide a template for the application of nematic elastomers to emerging technologies.
We consider a mathematical model that describes the flow of a Nematic Liquid Crystal (NLC) film placed on a flat substrate, across which a spatially-varying electric potential is applied. Due to their polar nature, NLC molecules interact with the (nonuniform) electric field generated, leading to instability of a flat film. Implementation of the long wave scaling leads to a partial differential equation that predicts the subsequent time evolution of the thin film. This equation is coupled to a boundary value problem that describes the interaction between the local molecular orientation of the NLC (the director field) and the electric potential. We investigate numerically the behavior of an initially flat film for a range of film heights and surface anchoring conditions.
In this paper, the two-dimensional pure bending of a hyperelastic substrate coated by a nematic liquid crystal elastomer (abbreviated as NLCE) is studied within the framework of nonlinear elasticity. The governing system, arising from the deformational momentum balance, the orientational momentum balance and the mechanical constraint, is formulated, and the corresponding exact solution is derived for a given constitutive model. It is found that there exist two different bending solutions. In order to determine which the preferred one is, we compare the total potential energy for both solutions and find that the two energy curves may have an intersection point at a critical value of the bending angle $alpha_c$ for some material parameters. In particular, the director $bm n$ abruptly rotates $dfrac{pi}{2}$ from one solution to another at $alpha_c$, which indicates a director reorientation (or jump). Furthermore, the effects of different material and geometric parameters on the bending deformation and the transition angle $alpha_c$ can be revealed using the obtained bending solutions. Meanwhile, the exact solution can offer a benchmark problem for validating the accuracy of approximated plate models for liquid crystal elastomers.
Macroscale robotic systems have demonstrated great capabilities of high speed, precise, and agile functions. However, the ability of soft robots to perform complex tasks, especially in centimeter and millimeter scale, remains limited due to the unavailability of fast, energy-efficient soft actuators that can programmably change shape. Here, we combine desirable characteristics from two distinct active materials: fast and efficient actuation from dielectric elastomers and facile shape programmability from liquid crystal elastomers into a single shape changing electrical actuator. Uniaxially aligned monoliths achieve strain rates over 120%/s with energy conversion efficiency of 20% while moving loads over 700 times the actuator weight. The combined actuator technology offers unprecedented opportunities towards miniaturization with precision, efficiency, and more degrees of freedom for applications in soft robotics and beyond.
This work investigates how a thermal diode can be designed from a nematic liquid crystal confined inside a cylindrical capillary. In the case of homeotropic anchoring, a defect structure called escaped radial disclination arises. The asymmetry of such structure causes thermal rectification rates up to 3.5% at room temperature, comparable to thermal diodes made from carbon nanotubes. Sensitivity of the system with respect the heat power supply, the geometry of the capillary tube and the molecular anchoring angle is also discussed.