No Arabic abstract
All non-interacting two-dimensional electronic systems are expected to exhibit an insulating ground state. This conspicuous absence of the metallic phase has been challenged only in the case of low-disorder, low density, semiconducting systems where strong interactions dominate the electronic state. Unexpectedly, over the last two decades, there have been multiple reports on the observation of a state with metallic characteristics on a variety of thin-film superconductors. To date, no theoretical explanation has been able to fully capture the existence of such a state for the large variety of superconductors exhibiting it. Here we show that for two very different thin-film superconductors, amorphous indium-oxide and a single-crystal of 2H-NbSe2, this metallic state can be eliminated by filtering external radiation. Our results show that these superconducting films are extremely sensitive to external perturbations leading to the suppression of superconductivity and the appearance of temperature independent, metallic like, transport at low temperatures. We relate the extreme sensitivity to the theoretical observation that, in two-dimensions, superconductivity is only marginally stable.
We present low temperature tunneling density-of-states measurements in Al films in high parallel magnetic fields. The thickness range of the films, t=6-9 nm, was chosen so that the orbital and Zeeman contributions to their parallel critical fields were comparable. In this quasi-spin paramagnetically limited configuration, the field produces a significant suppression of the gap, and at high fields the gapless state is reached. By comparing measured and calculated tunneling spectra we are able to extract the value of the antisymmetric Fermi-liquid parameter G^0 and thereby deduce the quasiparticle density dependence of the effective parameter G^0_{eff} across the gapless state.
We report on terahertz frequency-domain spectroscopy (THz-FDS) experiments in which we measure charge carrier dynamics and excitations of thin-film superconducting systems at low temperatures in the THz spectral range. The characteristics of the set-up and the experimental procedures are described comprehensively. We discuss the single-particle density of states and a theory of electrodynamic absorption and optical conductivity of conventional superconductors. We present the experimental performance of the setup at low temperatures for a broad spectral range from 0.1 - 1.1 THz by the example of ultra-thin films of weakly disordered superconductors niobium nitride (NbN) and tantalum nitride (TaN) with different values of critical temperatures. Furthermore, we analyze and interpret our experimental data within the framework of conventional Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity.
FeTe, a non-superconducting parent compound in the iron-chalcogenide family, becomes superconducting after annealing in oxygen. Under the presence of magnetism, spin-orbit coupling, inhomogeneity and lattice distortion, the nature of its superconductivity is not well understood. Here, we combined mutual inductance technique with magneto transport to study the magnetization and superconductivity of FeTe thin films. We found that the films with the highest Tc showed non-saturating superfluid density and a strong magnetic hysteresis distinct from that in a homogeneous superconductor. Such hysteresis can be well explained by a two-level critical state model and suggested the importance of granularity to superconductivity in this compound.
Recently, detailed real space imaging using scanning tunneling spectroscopy of the vortex lattice in a weakly pinned a-MoGe thin film revealed that the vortex lattice melts in two steps with temperature or magnetic field, going first from a vortex solid to a hexatic vortex fluid and then from a hexatic vortex fluid to an isotropic vortex liquid. In this paper, we show that the resistance in the vortex fluid states is extremely sensitive to radio-frequency electromagnetic perturbation. In the presence of very low-amplitude excitation above few kilohertz, the resistance increases by several orders of magnitude. On the other hand when the superconductor is well shielded from external electromagnetic radiation, the dissipation in the sample is very small and the resistance is below our detection limit.
We report the high-field superconducting properties of thin, disordered Re films via magneto-transport and tunneling density of states measurements. Films with thicknesses in the range of 9 nm to 3 nm had normal state sheet resistances of $sim$0.2 k$Omega$ to $sim$1 k$Omega$ and corresponding transition temperatures in the range of 6 K to 3 K. Tunneling spectra were consistent with those of a moderate coupling BCS superconductor. Notwithstanding these unremarkable superconducting properties, the films exhibited an extraordinarily high upper critical field. We estimate their zero-temperature $H_{c2}$ to be more than twice the Pauli limit. Indeed, in 6 nm samples the estimated reduced critical field $H_{c2}/T_csim$ 5.6 T/K is among the highest reported for any elemental superconductor. Although the sheet resistances of the films were well below the quantum resistance $R_Q=h/4e^2$, their $H_{c2}$s approached the theoretical upper limit of a strongly disordered superconductor for which $k_Fellsim1$.