Do you want to publish a course? Click here

A Fast-Evolving, Luminous Transient Discovered by K2/Kepler

106   0   0.0 ( 0 )
 Added by Armin Rest
 Publication date 2018
  fields Physics
and research's language is English
 Authors A. Rest




Ask ChatGPT about the research

For decades optical time-domain searches have been tuned to find ordinary supernovae, which rise and fall in brightness over a period of weeks. Recently, supernova searches have improved their cadences and a handful of fast-evolving luminous transients (FELTs) have been identified. FELTs have peak luminosities comparable to Type Ia supernovae, but rise to maximum in $<10$ days and fade from view in $<$month. Here we present the most extreme example of this class thus far, KSN2015K, with a rise time of only 2.2 days and a time above half-maximum ($t_{1/2}$) of only 6.8 days. Here we show that, unlike Type Ia supernovae, the light curve of KSN2015K was not powered by the decay of radioactive elements. We further argue that it is unlikely that it was powered by continuing energy deposition from a central remnant (a magnetar or black hole). Using numerical radiation hydrodynamical models, we show that the light curve of KSN2015K is well fit by a model where the supernova runs into external material presumably expelled in a pre-supernova mass loss episode. The rapid rise of KSN2015K therefore probes the venting of photons when a hypersonic shock wave breaks out of a dense extended medium.



rate research

Read More

200 - J. Vinko , F. Yuan , R. M. Quimby 2014
We present follow-up observations of an optical transient (OT) discovered by ROTSE on Jan. 21, 2009. Photometric monitoring was carried out with ROTSE-IIIb in the optical and Swift in the UV up to +70 days after discovery. The light curve showed a fast rise time of ~10 days followed by a steep decline over the next 60 days, which was much faster than that implied by 56Ni - 56Co radioactive decay. The SDSS DR10 database contains a faint, red object at the position of the OT, which appears slightly extended. This and other lines of evidence suggest that the OT is of extragalactic origin, and this faint object is likely the host galaxy. A sequence of optical spectra obtained with the 9.2-m Hobby-Eberly Telescope (HET) between +8 and +45 days after discovery revealed a hot, blue continuum with no visible spectral features. A few weak features that appeared after +30 days probably originated from the underlying host. Fitting synthetic templates to the observed spectrum of the host galaxy revealed a redshift of z = 0.19. At this redshift the peak magnitude of the OT is close to -22.5, similar to the brightest super-luminous supernovae; however, the lack of identifiable spectral features makes the massive stellar death hypothesis less likely. A more plausible explanation appears to be the tidal disruption of a sun-like star by the central super-massive black hole. We argue that this transient likely belongs to a class of super-Eddington tidal disruption events.
We present the ATLAS discovery and initial analysis of the first 18 days of the unusual transient event, ATLAS18qqn/AT2018cow. It is characterized by a high peak luminosity ($sim$1.7 $times$ 10$^{44}$ erg s$^{-1}$), rapidly evolving light curves ($>$5 mag rise to peak in $sim$3.5 days), and hot blackbody spectra, peaking at $sim$27000 K that are relatively featureless and unchanging over the first two weeks. The bolometric light curve cannot be powered by radioactive decay under realistic assumptions. The detection of high-energy emission may suggest a central engine as the powering source. Using a magnetar model, we estimated an ejected mass of $0.1-0.4$ msol, which lies between that of low-energy core-collapse events and the kilonova, AT2017gfo. The spectra cooled rapidly from 27000 to 15000 K in just over 2 weeks but remained smooth and featureless. Broad and shallow emission lines appear after about 20 days, and we tentatively identify them as He I although they would be redshifted from their rest wavelengths. We rule out that there are any features in the spectra due to intermediate mass elements up to and including the Fe-group. The presence of r-process elements cannot be ruled out. If these lines are due to He, then we suggest a low-mass star with residual He as a potential progenitor. Alternatively, models of magnetars formed in neutron-star mergers give plausible matches to the data.
We have used the {it Spitzer Space Telescope} to observe two transiting planetary systems orbiting low mass stars discovered in the Kepler Ktwo mission. The system K2-3 (EPIC 201367065) hosts three planets while EPIC 202083828 (K2-26) hosts a single planet. Observations of all four objects in these two systems confirm and refine the orbital and physical parameters of the planets. The refined orbital information and more precise planet radii possible with Spitzer will be critical for future observations of these and other Ktwo targets. For K2-3b we find marginally significant evidence for a Transit Timing Variation between the Ktwo and Spitzer epochs.
We present observations of ASASSN-20hx, a nearby ambiguous nuclear transient (ANT) discovered in NGC 6297 by the All-Sky Automated Survey for Supernovae (ASAS-SN). We observed ASASSN-20hx from $-$30 to 275 days relative to peak UV/optical emission using high-cadence, multi-wavelength spectroscopy and photometry. From Transiting Exoplanet Survey Satellite (TESS) data, we determine that the ANT began to brighten on 2020 June 23.3 with a linear rise in flux for at least the first week. ASASSN-20hx peaked in the UV/optical 29.5 days later on 2020 July 22.8 (MJD = 59052.8) at a bolometric luminosity of $L = (3.15 pm 0.04) times 10^{43}$ erg s$^{-1}$. The subsequent decline is slower than any TDE observed to date and consistent with many other ANTs. Compared to an archival X-ray detection, the X-ray luminosity of ASASSN-20hx increased by an order of magnitude to $L_{x} sim 1.5 times 10^{42}$ erg s$^{-1}$ and then slowly declined over time. The X-ray emission is well-fit by a power law with a photon index of $Gamma sim 2.3 - 2.6$. Both the optical and near infrared spectra of ASASSN-20hx lack emission lines, unusual for any known class of nuclear transient. While ASASSN-20hx has some characteristics seen in both tidal disruption events (TDEs) and active galactic nuclei (AGNs), it cannot be definitively classified with current data.
Wide-field optical surveys have begun to uncover large samples of fast (t_rise < 5d), luminous (M_peak < -18), blue transients. While commonly attributed to the breakout of a supernova shock into a dense wind, the great distances to the transients of this class found so far have hampered detailed investigation of their properties. We present photometry and spectroscopy from a comprehensive worldwide campaign to observe AT2018cow (ATLAS18qqn), the first fast-luminous optical transient to be found in real time at low redshift. Our first spectra (<2 days after discovery) are entirely featureless. A very broad absorption feature suggestive of near-relativistic velocities develops between 3-8 days, then disappears. Broad emission features of H and He develop after >10 days. The spectrum remains extremely hot throughout its evolution, and the photospheric radius contracts with time (receding below R<10^14 cm after 1 month). This behaviour does not match that of any known supernova, although a relativistic jet within a fallback supernova could explain some of the observed features. Alternatively, the transient could originate from the disruption of a star by an intermediate-mass black hole, although this would require long-lasting emission of highly super-Eddington thermal radiation. In either case, AT2018cow suggests that the population of fast luminous transients represents a new class of astrophysical event. Intensive follow-up of this event in its late phases, and of any future events found at comparable distance, will be essential to better constrain their origins.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا