Do you want to publish a course? Click here

The Fast, Luminous Ultraviolet Transient AT2018cow: Extreme Supernova, or Disruption of a Star by an Intermediate-Mass Black Hole?

92   0   0.0 ( 0 )
 Added by Daniel Perley
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Wide-field optical surveys have begun to uncover large samples of fast (t_rise < 5d), luminous (M_peak < -18), blue transients. While commonly attributed to the breakout of a supernova shock into a dense wind, the great distances to the transients of this class found so far have hampered detailed investigation of their properties. We present photometry and spectroscopy from a comprehensive worldwide campaign to observe AT2018cow (ATLAS18qqn), the first fast-luminous optical transient to be found in real time at low redshift. Our first spectra (<2 days after discovery) are entirely featureless. A very broad absorption feature suggestive of near-relativistic velocities develops between 3-8 days, then disappears. Broad emission features of H and He develop after >10 days. The spectrum remains extremely hot throughout its evolution, and the photospheric radius contracts with time (receding below R<10^14 cm after 1 month). This behaviour does not match that of any known supernova, although a relativistic jet within a fallback supernova could explain some of the observed features. Alternatively, the transient could originate from the disruption of a star by an intermediate-mass black hole, although this would require long-lasting emission of highly super-Eddington thermal radiation. In either case, AT2018cow suggests that the population of fast luminous transients represents a new class of astrophysical event. Intensive follow-up of this event in its late phases, and of any future events found at comparable distance, will be essential to better constrain their origins.

rate research

Read More

A unique signature for the presence of massive black holes in very dense stellar regions is occasional giant-amplitude outbursts of multiwavelength radiation from tidal disruption and subsequent accretion of stars that make a close approach to the black holes. Previous strong tidal disruption event (TDE) candidates were all associated with the centers of largely isolated galaxies. Here we report the discovery of a luminous X-ray outburst from a massive star cluster at a projected distance of 12.5 kpc from the center of a large lenticular galaxy. The luminosity peaked at ~10^{43} erg/s and decayed systematically over 10 years, approximately following a trend that supports the identification of the event as a TDE. The X-ray spectra were all very soft, with emission confined to be <3.0 keV, and could be described with a standard thermal disk. The disk cooled significantly as the luminosity decreased, a key thermal-state signature often observed in accreting stellar-mass black holes. This thermal-state signature, coupled with very high luminosities, ultrasoft X-ray spectra and the characteristic power-law evolution of the light curve, provides strong evidence that the source contains an intermediate-mass black hole (IMBH) with a mass of a few ten thousand solar mass. This event demonstrates that one of the most effective means to detect IMBHs is through X-ray flares from TDEs in star clusters.
178 - J. Vinko , F. Yuan , R. M. Quimby 2014
We present follow-up observations of an optical transient (OT) discovered by ROTSE on Jan. 21, 2009. Photometric monitoring was carried out with ROTSE-IIIb in the optical and Swift in the UV up to +70 days after discovery. The light curve showed a fast rise time of ~10 days followed by a steep decline over the next 60 days, which was much faster than that implied by 56Ni - 56Co radioactive decay. The SDSS DR10 database contains a faint, red object at the position of the OT, which appears slightly extended. This and other lines of evidence suggest that the OT is of extragalactic origin, and this faint object is likely the host galaxy. A sequence of optical spectra obtained with the 9.2-m Hobby-Eberly Telescope (HET) between +8 and +45 days after discovery revealed a hot, blue continuum with no visible spectral features. A few weak features that appeared after +30 days probably originated from the underlying host. Fitting synthetic templates to the observed spectrum of the host galaxy revealed a redshift of z = 0.19. At this redshift the peak magnitude of the OT is close to -22.5, similar to the brightest super-luminous supernovae; however, the lack of identifiable spectral features makes the massive stellar death hypothesis less likely. A more plausible explanation appears to be the tidal disruption of a sun-like star by the central super-massive black hole. We argue that this transient likely belongs to a class of super-Eddington tidal disruption events.
A small cluster of massive stars residing in the Galactic center, collectively known as IRS13E, is of special interest due to its close proximity to Sgr A* and the possibility that an embedded intermediate-mass black hole (IMBH) binds its member stars. It has been suggested that colliding winds from two member stars, both classified as Wolf-Rayet type, are responsible for the observed X-ray, infrared and radio emission from IRS13E. We have conducted an in-depth study of the X-ray spatial, temporal and spectral properties of IRS13E, based on 5.6 Ms of ultra-deep Chandra observations obtained over 20 years. These X-ray observations show no significant evidence for source variability. We have also explored the kinematics of the cluster members, using Keck near-infrared imaging and spectroscopic data on a 14-yr baseline that considerably improve the accuracy of stars proper motions. The observations are interpreted using 3-dimensional hydrodynamical simulations of colliding winds tailored to match the physical conditions of IRS13E, leading us to conclude that the observed X-ray spectrum and morphology can be well explained by the colliding wind scenario, in the meantime offering no support for the presence of a putative IMBH. An IMBH more massive than a few $10^3{rm~M_odot}$ is also strongly disfavored by the stellar kinematics.
A supermassive black hole in the nucleus of a galaxy will be revealed when a star passes close enough to be torn apart by tidal forces and a flare of radiation is emitted by the stream of stellar debris that plunges into the black hole. Since common active galactic nuclei have accreting black holes that can also produce flares, a convincing demonstration that a stellar tidal disruption has occurred generally begins with a ``normal galaxy that has no evidence of prior nuclear activity. Here we report a luminous UV flare from an elliptical galaxy at z = 0.37 in the Groth field of the GALEX Deep Imaging Survey that has no evidence of a Seyfert nucleus from optical spectroscopy and X-ray imaging obtained during the flare. Multiwavelength data collected at the time of the event, and for 2 years following, allow us to constrain, for the first time, the spectral energy distribution of a candidate tidal disruption flare from optical through X-rays. The luminosity and temperature of the radiation and the decay curve of the flare are in excellent agreement with theoretical predictions for the tidal disruption of a star, and provide the strongest empirical evidence for a stellar disruption event to date.
We report the serendipitous discovery of a bright point source flare in the Abell cluster 1795 with archival EUVE and Chandra observations. Assuming the EUVE emission is associated with the Chandra source, the X-ray 0.5-7 keV flux declined by a factor of ~2300 over a time span of 6 years, following a power-law decay with index ~2.44+-0.40. The Chandra data alone vary by a factor of ~20. The spectrum is well fit by a blackbody with a constant temperature of kT~0.09 keV (~10^6 K). The flare is spatially coincident with the nuclear region of a faint, inactive galaxy with a photometric redshift consistent at the one sigma level with the cluster (z=0.062476). We argue that these properties are indicative of a tidal disruption of a star by a black hole with log(M_BH/M_sun)~5.5+-0.5. If so, such a discovery indicates that tidal disruption flares may be used to probe black holes in the intermediate mass range, which are very difficult to study by other means.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا