Do you want to publish a course? Click here

Whale swarm algorithm with the mechanism of identifying and escaping from extreme points for multimodal function optimization

144   0   0.0 ( 0 )
 Added by Bing Zeng
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Most real-world optimization problems often come with multiple global optima or local optima. Therefore, increasing niching metaheuristic algorithms, which devote to finding multiple optima in a single run, are developed to solve these multimodal optimization problems. However, there are two difficulties urgently to be solved for most existing niching metaheuristic algorithms: how to set the optimal values of niching parameters for different optimization problems, and how to jump out of the local optima efficiently. These two difficulties limited their practicality largely. Based on Whale Swarm Algorithm (WSA) we proposed previously, this paper presents a new multimodal optimizer named WSA with Iterative Counter (WSA-IC) to address these two difficulties. In the one hand, WSA-IC improves the iteration rule of the original WSA for multimodal optimization, which removes the need of specifying different values of attenuation coefficient for different problems to form multiple subpopulations, without introducing any niching parameter. In the other hand, WSA-IC enables the identification of extreme point during iterations relying on two new parameters (i.e., stability threshold Ts and fitness threshold Tf), to jump out of the located extreme point. Moreover, the convergence of WSA-IC is proved. Finally, the proposed WSA-IC is compared with several niching metaheuristic algorithms on CEC2015 niching benchmark test functions and five additional classical multimodal functions with high dimensions. The experimental results demonstrate that WSA-IC statistically outperforms other niching metaheuristic algorithms on most test functions.



rate research

Read More

68 - Bing Zeng , Liang Gao , Xinyu Li 2017
Increasing nature-inspired metaheuristic algorithms are applied to solving the real-world optimization problems, as they have some advantages over the classical methods of numerical optimization. This paper has proposed a new nature-inspired metaheuristic called Whale Swarm Algorithm for function optimization, which is inspired by the whales behavior of communicating with each other via ultrasound for hunting. The proposed Whale Swarm Algorithm has been compared with several popular metaheuristic algorithms on comprehensive performance metrics. According to the experimental results, Whale Swarm Algorithm has a quite competitive performance when compared with other algorithms.
Whale Optimization Algorithm (WOA) is a nature-inspired meta-heuristic optimization algorithm, which was proposed by Mirjalili and Lewis in 2016. This algorithm has shown its ability to solve many problems. Comprehensive surveys have been conducted about some other nature-inspired algorithms, such as ABC, PSO, etc.Nonetheless, no survey search work has been conducted on WOA. Therefore, in this paper, a systematic and meta analysis survey of WOA is conducted to help researchers to use it in different areas or hybridize it with other common algorithms. Thus, WOA is presented in depth in terms of algorithmic backgrounds, its characteristics, limitations, modifications, hybridizations, and applications. Next, WOA performances are presented to solve different problems. Then, the statistical results of WOA modifications and hybridizations are established and compared with the most common optimization algorithms and WOA. The surveys results indicate that WOA performs better than other common algorithms in terms of convergence speed and balancing between exploration and exploitation. WOA modifications and hybridizations also perform well compared to WOA. In addition, our investigation paves a way to present a new technique by hybridizing both WOA and BAT algorithms. The BAT algorithm is used for the exploration phase, whereas the WOA algorithm is used for the exploitation phase. Finally, statistical results obtained from WOA-BAT are very competitive and better than WOA in 16 benchmarks functions. WOA-BAT also outperforms well in 13 functions from CEC2005 and 7 functions from CEC2019.
277 - Martin Pelikan , Kumara Sastry , 2008
This paper proposes the incremental Bayesian optimization algorithm (iBOA), which modifies standard BOA by removing the population of solutions and using incremental updates of the Bayesian network. iBOA is shown to be able to learn and exploit unrestricted Bayesian networks using incremental techniques for updating both the structure as well as the parameters of the probabilistic model. This represents an important step toward the design of competent incremental estimation of distribution algorithms that can solve difficult nearly decomposable problems scalably and reliably.
Not all generate-and-test search algorithms are created equal. Bayesian Optimization (BO) invests a lot of computation time to generate the candidate solution that best balances the predicted value and the uncertainty given all previous data, taking increasingly more time as the number of evaluations performed grows. Evolutionary Algorithms (EA) on the other hand rely on search heuristics that typically do not depend on all previous data and can be done in constant time. Both the BO and EA community typically assess their performance as a function of the number of evaluations. However, this is unfair once we start to compare the efficiency of these classes of algorithms, as the overhead times to generate candidate solutions are significantly different. We suggest to measure the efficiency of generate-and-test search algorithms as the expected gain in the objective value per unit of computation time spent. We observe that the preference of an algorithm to be used can change after a number of function evaluations. We therefore propose a new algorithm, a combination of Bayesian optimization and an Evolutionary Algorithm, BEA for short, that starts with BO, then transfers knowledge to an EA, and subsequently runs the EA. We compare the BEA with BO and the EA. The results show that BEA outperforms both BO and the EA in terms of time efficiency, and ultimately leads to better performance on well-known benchmark objective functions with many local optima. Moreover, we test the three algorithms on nine test cases of robot learning problems and here again we find that BEA outperforms the other algorithms.
This paper describes how fitness inheritance can be used to estimate fitness for a proportion of newly sampled candidate solutions in the Bayesian optimization algorithm (BOA). The goal of estimating fitness for some candidate solutions is to reduce the number of fitness evaluations for problems where fitness evaluation is expensive. Bayesian networks used in BOA to model promising solutions and generate the new ones are extended to allow not only for modeling and sampling candidate solutions, but also for estimating their fitness. The results indicate that fitness inheritance is a promising concept in BOA, because population-sizing requirements for building appropriate models of promising solutions lead to good fitness estimates even if only a small proportion of candidate solutions is evaluated using the actual fitness function. This can lead to a reduction of the number of actual fitness evaluations by a factor of 30 or more.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا