Do you want to publish a course? Click here

Impact of Channel State Misreporting on Multi-user Massive MIMO Scheduling Performance

84   0   0.0 ( 0 )
 Added by Zhanzhan Zhang
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

The robustness of system throughput with scheduling is a critical issue. In this paper, we analyze the sensitivity of multi-user scheduling performance to channel misreporting in systems with massive antennas. The main result is that for the round-robin scheduler combined with max-min power control, the channel magnitude misreporting is harmful to the scheduling performance and has a different impact from the purely physical layer analysis. Specifically, for the homogeneous users that have equal average signal-to-noise ratios (SNRs), underreporting is harmful, while overreporting is beneficial to others. In underreporting, the asymptotic rate loss on others is derived, which is tight when the number of antennas is huge. One interesting observation in our research is that the rate loss periodically increases and decreases as the number of misreporters grows. For the heterogeneous users that have various SNRs, both underreporting and overreporting can degrade the scheduler performance. We observe that strong misreporting changes the user grouping decision and hence greatly decreases some users rates regardless of others gaining rate improvements, while with carefully designed weak misreporting, the scheduling decision keeps fixed and the rate loss on others is shown to grow nearly linearly with the number of misreporters.



rate research

Read More

In this paper, we investigate the impact of channel aging on the performance of cell-free (CF) massive multiple-input multiple-output (MIMO) systems with both spatial correlation and pilot contamination. We derive novel closed-form uplink and downlink spectral efficiency (SE) expressions that take imperfect channel estimation into account. More specifically, we consider large-scale fading decoding and matched-filter receiver cooperation in the uplink. The uplink performance of a small-cell (SC) system is derived for comparison. The CF massive MIMO system achieves higher 95%-likely uplink SE than the SC system. In the downlink, the coherent transmission has four times higher 95%-likely per-user SE than the non-coherent transmission. Statistical channel cooperation power control (SCCPC) is used to mitigate the inter-user interference. SCCPC performs better than full power transmission, but the benefits are gradually weakened as the channel aging becomes stronger. Furthermore, strong spatial correlation reduces the SE but degrades the effect of channel aging. Increasing the number of antennas can improve the SE while decreasing the energy efficiency. Finally, we use the maximum normalized Doppler shift to design the SE-improved length of the resource block. Simulation results are presented to validate the accuracy of our expressions and prove that the CF massive MIMO system is more robust to channel aging than the SC system.
77 - You Chen , Guyue Li , Chen Sun 2020
Physical-layer key generation (PKG) in multi-user massive MIMO networks faces great challenges due to the large length of pilots and the high dimension of channel matrix. To tackle these problems, we propose a novel massive MIMO key generation scheme with pilot reuse based on the beam domain channel model and derive close-form expression of secret key rate. Specifically, we present two algorithms, i.e., beam-domain based channel probing (BCP) algorithm and interference neutralization based multi-user beam allocation (IMBA) algorithm for the purpose of channel dimension reduction and multi-user pilot reuse, respectively. Numerical results verify that the proposed PKG scheme can achieve the secret key rate that approximates the perfect case, and significantly reduce the dimension of the channel estimation and pilot overhead.
Large number of antennas and radio frequency (RF) chains at the base stations (BSs) lead to high energy consumption in massive MIMO systems. Thus, how to improve the energy efficiency (EE) with a computationally efficient approach is a significant challenge in the design of massive MIMO systems. With this motivation, a learning-based stochastic gradient descent algorithm is proposed in this paper to obtain the optimal joint uplink and downlink EE with joint antenna selection and user scheduling in single-cell massive MIMO systems. Using Jensens inequality and the characteristics of wireless channels, a lower bound on the system throughput is obtained. Subsequently, incorporating the power consumption model, the corresponding lower bound on the EE of the system is identified. Finally, learning-based stochastic gradient descent method is used to solve the joint antenna selection and user scheduling problem, which is a combinatorial optimization problem. Rare event simulation is embedded in the learning-based stochastic gradient descent method to generate samples with very small probabilities. In the analysis, both perfect and imperfect channel side information (CSI) at the BS are considered. Minimum mean-square error (MMSE) channel estimation is employed in the study of the imperfect CSI case. In addition, the effect of a constraint on the number of available RF chains in massive MIMO system is investigated considering both perfect and imperfect CSI at the BS.
In this paper, we study Simultaneous Communication of Data and Control (SCDC) information signals in Full Duplex (FD) Multiple-Input Multiple-Output (MIMO) wireless systems. In particular, considering an FD MIMO base station serving multiple single-antenna FD users, a novel multi-user communication scheme for simultaneous DownLink (DL) beamformed data transmission and UpLink (UL) pilot-assisted channel estimation is presented. Capitalizing on a recent FD MIMO hardware architecture with reduced complexity self-interference analog cancellation, we jointly design the base stations transmit and receive beamforming matrices as well as the settings for the multiple analog taps and the digital SI canceller with the objective to maximize the DL sum rate. Our simulation results showcase that the proposed approach outperforms its conventional half duplex counterpart with 50% reduction in hardware complexity compared to the latest FD-based SCDC schemes.
61 - Jindan Xu , Wei Xu , Fengkui Gong 2017
Low-resolution digital-to-analog converters (DACs) and analog-to-digital converters (ADCs) are considered to reduce cost and power consumption in multiuser massive multiple-input multiple-output (MIMO). Using the Bussgang theorem, we derive the asymptotic downlink achievable rate w.r.t the resolutions of both DACs and ADCs, i.e., $b_{DA}$ and $b_{AD}$, under the assumption of large antenna number, $N$, and fixed user load ratio, $beta$. We characterize the rate loss caused by finite-bit-resolution converters and reveal that the quantization distortion is ignorable at low signal-to-noise ratio (SNR) even with low-resolution converters at both sides. While for maintaining the same rate loss at high SNR, it is discovered that one-more-bit DAC resolution is needed when more users are scheduled with $beta$ increased by four times. More specifically for one-bit rate loss requirement, $b_{DA}$ can be set by $leftlceil b_{AD}+frac{1}{2}logbeta rightrceil$ given $b_{AD}$. Similar observations on ADCs are also obtained with numerical verifications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا