No Arabic abstract
In this work we present a novel unsupervised framework for hard training example mining. The only input to the method is a collection of images relevant to the target application and a meaningful initial representation, provided e.g. by pre-trained CNN. Positive examples are distant points on a single manifold, while negative examples are nearby points on different manifolds. Both types of examples are revealed by disagreements between Euclidean and manifold similarities. The discovered examples can be used in training with any discriminative loss. The method is applied to unsupervised fine-tuning of pre-trained networks for fine-grained classification and particular object retrieval. Our models are on par or are outperforming prior models that are fully or partially supervised.
Simulation can be a powerful tool for understanding machine learning systems and designing methods to solve real-world problems. Training and evaluating methods purely in simulation is often doomed to succeed at the desired task in a simulated environment, but the resulting models are incapable of operation in the real world. Here we present and evaluate a method for transferring a vision-based lane following driving policy from simulation to operation on a rural road without any real-world labels. Our approach leverages recent advances in image-to-image translation to achieve domain transfer while jointly learning a single-camera control policy from simulation control labels. We assess the driving performance of this method using both open-loop regression metrics, and closed-loop performance operating an autonomous vehicle on rural and urban roads.
To understand human behavior we must not just recognize individual actions but model possibly complex group activity and interactions. Hierarchical models obtain the best results in group activity recognition but require fine grained individual action annotations at the actor level. In this paper we show that using only skeletal data we can train a state-of-the art end-to-end system using only group activity labels at the sequence level. Our experiments show that models trained without individual action supervision perform poorly. On the other hand we show that pseudo-labels can be computed from any pre-trained feature extractor with comparable final performance. Finally our carefully designed lean pose only architecture shows highly competitive results versus more complex multimodal approaches even in the self-supervised variant.
The training of deep-learning-based 3D object detectors requires large datasets with 3D bounding box labels for supervision that have to be generated by hand-labeling. We propose a network architecture and training procedure for learning monocular 3D object detection without 3D bounding box labels. By representing the objects as triangular meshes and employing differentiable shape rendering, we define loss functions based on depth maps, segmentation masks, and ego- and object-motion, which are generated by pre-trained, off-the-shelf networks. We evaluate the proposed algorithm on the real-world KITTI dataset and achieve promising performance in comparison to state-of-the-art methods requiring 3D bounding box labels for training and superior performance to conventional baseline methods.
Distance metric learning (DML) is to learn the embeddings where examples from the same class are closer than examples from different classes. It can be cast as an optimization problem with triplet constraints. Due to the vast number of triplet constraints, a sampling strategy is essential for DML. With the tremendous success of deep learning in classifications, it has been applied for DML. When learning embeddings with deep neural networks (DNNs), only a mini-batch of data is available at each iteration. The set of triplet constraints has to be sampled within the mini-batch. Since a mini-batch cannot capture the neighbors in the original set well, it makes the learned embeddings sub-optimal. On the contrary, optimizing SoftMax loss, which is a classification loss, with DNN shows a superior performance in certain DML tasks. It inspires us to investigate the formulation of SoftMax. Our analysis shows that SoftMax loss is equivalent to a smoothed triplet loss where each class has a single center. In real-world data, one class can contain several local clusters rather than a single one, e.g., birds of different poses. Therefore, we propose the SoftTriple loss to extend the SoftMax loss with multiple centers for each class. Compared with conventional deep metric learning algorithms, optimizing SoftTriple loss can learn the embeddings without the sampling phase by mildly increasing the size of the last fully connected layer. Experiments on the benchmark fine-grained data sets demonstrate the effectiveness of the proposed loss function. Code is available at https://github.com/idstcv/SoftTriple
In this paper, we study a new representation-learning task, which we termed as disassembling object representations. Given an image featuring multiple objects, the goal of disassembling is to acquire a latent representation, of which each part corresponds to one category of objects. Disassembling thus finds its application in a wide domain such as image editing and few- or zero-shot learning, as it enables category-specific modularity in the learned representations. To this end, we propose an unsupervised approach to achieving disassembling, named Unsupervised Disassembling Object Representation (UDOR). UDOR follows a double auto-encoder architecture, in which a fuzzy classification and an object-removing operation are imposed. The fuzzy classification constrains each part of the latent representation to encode features of up to one object category, while the object-removing, combined with a generative adversarial network, enforces the modularity of the representations and integrity of the reconstructed image. Furthermore, we devise two metrics to respectively measure the modularity of disassembled representations and the visual integrity of reconstructed images. Experimental results demonstrate that the proposed UDOR, despited unsupervised, achieves truly encouraging results on par with those of supervised methods.